题目:

八皇后问题:在8 X 8的国际象棋上摆放八个皇后,使其不能相互攻击,即任意两个皇后不得处于同一行,同一列或者同意对角线上,求出所有符合条件的摆法。

思路:

1、回溯法

数据结构:

由于8个皇后不能处在同一行,那么肯定每个皇后占据一行,这样可以定义一个数组A[8],数组中第i个数字,即A[i]表示位于第i行的皇后的列号。

满足条件:任意两个皇后不同列,即A[i]!=A[j],任意两个皇后不在同一对角线上,即abs(i-j)!=abs(A[i]-A[j])。

算法:

回溯法,通过深度遍历的形式枚举数组A的所有排列组合,并通过剪枝的形式(判断是否满足上述的条件)来减少不必要的计算量,详见代码。

2、全排列法

思路与字符串排列一样http://www.cnblogs.com/AndyJee/p/4655485.html,只是还需要对每一种排列做判断。

数据结构:

8个皇后不能处在同一行,那么肯定每个皇后占据一行,这样可以定义一个数组A[8],数组中第i个数字,即A[i]表示位于第i行的皇后的列号,先把数组A[8]分别用0-7初始化。

满足条件:由于我们用0-7这7个不同的数字初始化数组,因此任意两个皇后肯定也不同列,那么我们只需要判断每个排列对应的8个皇后中是否有任意两个在同一对角线上即可,即对于数组的两个下标i和j,如果i-j==A[i]-A[j]或i-j==A[j]-A[i],则认为有两个元素位于了同一个对角线上,则该排列不符合条件。

思路:

参考字符串排列:

求整个字符串的排列,可以分成两步:首先求所有可能出现在第一个位置的字符,即把第一个字符和后面的所有字符交换;然后固定第一个字符,求后面所有字符的排序。此时仍把后面的字符看成两部分,第一个字符和后面的字符,然后重复上述步骤。(递归)

然后判断每一种排列是否满足上述添加即可。

代码:

1、回溯法

#include <iostream>
#include <vector>
#include <stdlib.h> using namespace std;
int count=0; bool canPlace(int index,const vector<int> &result){
for(int i=0;i<index;i++){
if(result[index]==result[i] || abs(index-i)==abs(result[index]-result[i]))
return false;
}
return true;
} void queen(int index,vector<int> &result,int N){
if(index==N){
for(int i=0;i<N;i++)
cout<<result[i]<<" ";
cout<<endl;
count++;
return;
}
for(int i=0;i<N;i++){
result[index]=i;
if(canPlace(index,result))
queen(index+1,result,N);
}
} int main()
{
int n=8;
vector<int> result; for(int i=0;i<n;i++)
result.push_back(i);
queen(0,result,n);
cout<<count<<endl;
return 0;
}

2、全排列法

#include <iostream>
#include <vector>
#include <stdlib.h> using namespace std;
int count=0; void swap(int *a,int *b){
int tmp=*a;
*a=*b;
*b=tmp;
} void queen_permutation(vector<int> &result,int index,int len){
bool can=true;
if(index==len-1){
for(int i=0;i<len;i++){
for(int j=i+1;j<len;j++){
if(i-j==result[i]-result[j] || i-j==result[j]-result[i]){
can=false;
break;
}
}
if(can==false)
break;
}
if(can){
for(int i=0;i<len;i++)
cout<<result[i];
cout<<endl;
count++;
}
}
else{
for(int i=index;i<len;i++){
swap(result[index],result[i]);
queen_permutation(result,index+1,len);
swap(result[index],result[i]);
}
}
} int main()
{
int n=8;
vector<int> result; for(int i=0;i<n;i++)
result.push_back(i);
queen_permutation(result,0,n);
cout<<count<<endl;
return 0;
}

(算法)N皇后问题的更多相关文章

  1. 回溯算法————n皇后、素数串

    回溯就是算法是搜索算法中一种控制策略,是一个逐个试探的过程.在试探的过程中,如果遇到错误的选择,就会回到上一步继续选择下一种走法,一步一步的进行直到找到解或者证明无解为止. 如下是一个经典回溯问题n皇 ...

  2. 算法——八皇后问题(eight queen puzzle)之回溯法求解

    八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...

  3. [算法] N 皇后

    N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 一. 求解N皇后问题是算法中回溯法应用的一个经典案例 回溯算 ...

  4. JS算法之八皇后问题(回溯法)

    八皇后这个经典的算法网上有很多种思路,我学习了之后自己实现了一下,现在大概说说我的思路给大家参考一下,也算记录一下,以免以后自己忘了要重新想一遍. 八皇后问题 八皇后问题,是一个古老而著名的问题,是回 ...

  5. 回溯算法 - n 皇后问题

    (1)问题描述 在 n × n 格的棋盘上放置彼此不受攻击的 n 个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n 后问题等价于在 n × n 的棋盘上放置 n 个 ...

  6. 7, java数据结构和算法: 八皇后问题分析和实现 , 递归回溯

    什么是八皇后问题: 指的是,在一个8 * 8的棋盘中, 放置8个棋子, 保证这8个棋子相互之间, 不在同一行,同一列,同一斜线, 共有多少种摆法? 游戏连接: http://www.4399.com/ ...

  7. noj算法 8皇后打印 回溯法

    描述: 输出8皇后问题所有结果. 输入: 没有输入. 输出: 每个结果第一行是No n:的形式,n表示输出的是第几个结果:下面8行,每行8个字符,‘A’表示皇后,‘.’表示空格.不同的结果中,先输出第 ...

  8. 算法——n皇后问题

    n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 给定一个整数 n,返回所有不同的 n 皇后问题的解决方案. 每一种解法包含一个明确的 n 皇后问题的棋 ...

  9. 洛谷 P1219 八皇后【经典DFS,温习搜索】

    P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

  10. 【学习总结】java数据结构和算法-第一章-内容介绍和授课方式

    总目录链接 [学习总结]尚硅谷2019java数据结构和算法 github:javaDSA 目录 几个经典算法面试题 算法和数据结构的重要性 几个经典算法面试题 字符串匹配 暴力法:慢 kmp算法:更 ...

随机推荐

  1. 两天三场Java实习生面试总结

    Java 关键字(如abstract)[详解] String[相关面试题] String.StringBuffer.StringBuilder区别 String中有没有使一个字符串反转的方法 线程的实 ...

  2. linux 修改时间 - [命令操作]

    我们一般使用“date -s”命令来修改系统时间.比如将系统时间设定成1996年6月10日的命令如下. #date -s 06/10/96 将系统时间设定成下午1点12分0秒的命令如下. #date ...

  3. tcpdump命令

    tcpdump 抓包 http://blog.sina.com.cn/s/blog_6335d36b0101mrfz.html

  4. [转]linux之date命令

    转自:http://www.cnblogs.com/peida/archive/2012/12/13/2815687.html 在linux环境中,不管是编程还是其他维护,时间是必不可少的,也经常会用 ...

  5. php 采集程序 宋正河

    本程序主要是通过php采集网页信息,程序自动存储采集进度,采用phpquery简化元素节点匹配,采集到的内容直接入库 你要做的只是写好采集语法,本程序适合有一定php基础的人使用!当然你也可以进行修改 ...

  6. Lucene 入门需要了解的东西

    全文搜索引擎的原理网上大段的内容,要想深入的学习,最好的办法就是先用一下,lucene 发展比较快,下面是写第一个demo  要注意的一些事情: 1.Lucene的核心jar包,下面几个包分别位于不同 ...

  7. Winform後台如何動態修改App.config文件里的內容

    以下方法修改的,自己添加的app.config裡面不會顯示出修改的東西. 方法一:通過使用System.Xml.XmlDocument對象的方法進行bin\debug\~.vshost.exe.Con ...

  8. 20+非常棒的Photoshop卡通设计教程

    现在把一个人的脸变成卡通图案再用它来当头像这种现象使非常常见的,同样的卡通插图可以用于多种渠道的设计.网上有很多公司都会创立一种吉祥物并把它应用到市场营销中.因为有了类似于photoshop这样强大的 ...

  9. python中基于descriptor的一些概念

    python中基于descriptor的一些概念(上) 1. 前言 2. 新式类与经典类 2.1 内置的object对象 2.2 类的方法 2.2.1 静态方法 2.2.2 类方法 2.3 新式类(n ...

  10. mongdb创建自增主键(primary key)的相关讨论 - Jason.Zhi

    根据mongodb官方文档介绍,如果在插入(insert)操作时,没有指定主键id,那么它会自动给插入行自动附上一个主键id.看起来不错,但是详细看看,就会发现这个id值有点复杂. 如下图: mong ...