(算法)N皇后问题
题目:
八皇后问题:在8 X 8的国际象棋上摆放八个皇后,使其不能相互攻击,即任意两个皇后不得处于同一行,同一列或者同意对角线上,求出所有符合条件的摆法。
思路:
1、回溯法
数据结构:
由于8个皇后不能处在同一行,那么肯定每个皇后占据一行,这样可以定义一个数组A[8],数组中第i个数字,即A[i]表示位于第i行的皇后的列号。
满足条件:任意两个皇后不同列,即A[i]!=A[j],任意两个皇后不在同一对角线上,即abs(i-j)!=abs(A[i]-A[j])。
算法:
回溯法,通过深度遍历的形式枚举数组A的所有排列组合,并通过剪枝的形式(判断是否满足上述的条件)来减少不必要的计算量,详见代码。
2、全排列法
思路与字符串排列一样http://www.cnblogs.com/AndyJee/p/4655485.html,只是还需要对每一种排列做判断。
数据结构:
8个皇后不能处在同一行,那么肯定每个皇后占据一行,这样可以定义一个数组A[8],数组中第i个数字,即A[i]表示位于第i行的皇后的列号,先把数组A[8]分别用0-7初始化。
满足条件:由于我们用0-7这7个不同的数字初始化数组,因此任意两个皇后肯定也不同列,那么我们只需要判断每个排列对应的8个皇后中是否有任意两个在同一对角线上即可,即对于数组的两个下标i和j,如果i-j==A[i]-A[j]或i-j==A[j]-A[i],则认为有两个元素位于了同一个对角线上,则该排列不符合条件。
思路:
参考字符串排列:
求整个字符串的排列,可以分成两步:首先求所有可能出现在第一个位置的字符,即把第一个字符和后面的所有字符交换;然后固定第一个字符,求后面所有字符的排序。此时仍把后面的字符看成两部分,第一个字符和后面的字符,然后重复上述步骤。(递归)
然后判断每一种排列是否满足上述添加即可。
代码:
1、回溯法
#include <iostream>
#include <vector>
#include <stdlib.h> using namespace std;
int count=0; bool canPlace(int index,const vector<int> &result){
for(int i=0;i<index;i++){
if(result[index]==result[i] || abs(index-i)==abs(result[index]-result[i]))
return false;
}
return true;
} void queen(int index,vector<int> &result,int N){
if(index==N){
for(int i=0;i<N;i++)
cout<<result[i]<<" ";
cout<<endl;
count++;
return;
}
for(int i=0;i<N;i++){
result[index]=i;
if(canPlace(index,result))
queen(index+1,result,N);
}
} int main()
{
int n=8;
vector<int> result; for(int i=0;i<n;i++)
result.push_back(i);
queen(0,result,n);
cout<<count<<endl;
return 0;
}
2、全排列法
#include <iostream>
#include <vector>
#include <stdlib.h> using namespace std;
int count=0; void swap(int *a,int *b){
int tmp=*a;
*a=*b;
*b=tmp;
} void queen_permutation(vector<int> &result,int index,int len){
bool can=true;
if(index==len-1){
for(int i=0;i<len;i++){
for(int j=i+1;j<len;j++){
if(i-j==result[i]-result[j] || i-j==result[j]-result[i]){
can=false;
break;
}
}
if(can==false)
break;
}
if(can){
for(int i=0;i<len;i++)
cout<<result[i];
cout<<endl;
count++;
}
}
else{
for(int i=index;i<len;i++){
swap(result[index],result[i]);
queen_permutation(result,index+1,len);
swap(result[index],result[i]);
}
}
} int main()
{
int n=8;
vector<int> result; for(int i=0;i<n;i++)
result.push_back(i);
queen_permutation(result,0,n);
cout<<count<<endl;
return 0;
}
(算法)N皇后问题的更多相关文章
- 回溯算法————n皇后、素数串
回溯就是算法是搜索算法中一种控制策略,是一个逐个试探的过程.在试探的过程中,如果遇到错误的选择,就会回到上一步继续选择下一种走法,一步一步的进行直到找到解或者证明无解为止. 如下是一个经典回溯问题n皇 ...
- 算法——八皇后问题(eight queen puzzle)之回溯法求解
八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...
- [算法] N 皇后
N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 一. 求解N皇后问题是算法中回溯法应用的一个经典案例 回溯算 ...
- JS算法之八皇后问题(回溯法)
八皇后这个经典的算法网上有很多种思路,我学习了之后自己实现了一下,现在大概说说我的思路给大家参考一下,也算记录一下,以免以后自己忘了要重新想一遍. 八皇后问题 八皇后问题,是一个古老而著名的问题,是回 ...
- 回溯算法 - n 皇后问题
(1)问题描述 在 n × n 格的棋盘上放置彼此不受攻击的 n 个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n 后问题等价于在 n × n 的棋盘上放置 n 个 ...
- 7, java数据结构和算法: 八皇后问题分析和实现 , 递归回溯
什么是八皇后问题: 指的是,在一个8 * 8的棋盘中, 放置8个棋子, 保证这8个棋子相互之间, 不在同一行,同一列,同一斜线, 共有多少种摆法? 游戏连接: http://www.4399.com/ ...
- noj算法 8皇后打印 回溯法
描述: 输出8皇后问题所有结果. 输入: 没有输入. 输出: 每个结果第一行是No n:的形式,n表示输出的是第几个结果:下面8行,每行8个字符,‘A’表示皇后,‘.’表示空格.不同的结果中,先输出第 ...
- 算法——n皇后问题
n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 给定一个整数 n,返回所有不同的 n 皇后问题的解决方案. 每一种解法包含一个明确的 n 皇后问题的棋 ...
- 洛谷 P1219 八皇后【经典DFS,温习搜索】
P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...
- 【学习总结】java数据结构和算法-第一章-内容介绍和授课方式
总目录链接 [学习总结]尚硅谷2019java数据结构和算法 github:javaDSA 目录 几个经典算法面试题 算法和数据结构的重要性 几个经典算法面试题 字符串匹配 暴力法:慢 kmp算法:更 ...
随机推荐
- RequireJS进阶(二) 转
这一篇来认识下打包工具的paths参数,在入门一中就介绍了require.config方法的paths参数.用来配置jquery模块的文件名(jQuery作为AMD模块时id为“jquery”,但文件 ...
- hdu 5444 Elven Postman(根据先序遍历和中序遍历求后序遍历)2015 ACM/ICPC Asia Regional Changchun Online
很坑的一道题,读了半天才读懂题,手忙脚乱的写完(套上模板+修改模板),然后RE到死…… 题意: 题面上告诉了我们这是一棵二叉树,然后告诉了我们它的先序遍历,然后,没了……没了! 反复读题,终于在偶然间 ...
- hdu 3537(博弈,翻硬币)
题意:给定了每个正面朝上的硬币的位置,然后每次可以翻1,2,3枚硬币,并且最右边的硬币开始必须是正面朝上的. 分析: 约束条件6:每次可以翻动一个.二个或三个硬币.(Mock Turtles游戏) 初 ...
- [Everyday Mathematics]20150219
设 $0<a<b$, 试证: $$\bex \int_a^b (x^2+1)e^{-x^2}\rd x\geq e^{-a^2}-e^{-b^2}. \eex$$
- dos攻击
概念理解 DoS到底是什么?接触PC机较早的同志会直接想到微软磁盘操作系统的DOS--DiskOperationSystem?不,此DoS非彼DOS也,DoS即DenialOfService,拒绝服务 ...
- 通过DDOS攻击流程图来浅谈如何预防Ddos攻击与防御
DDOS攻击流程图 站长之家配图(来源:ppkj.net) 一 背景 在前几天,我们运营的某网站遭受了一次ddos攻击,我们的网站是一个公益性质的网站,为各个厂商和白帽子之间搭建一个平台以传递安全问题 ...
- 数往知来 ADO.NET <八>
ADO.NET基础 学习目的:通过程序访问数据库 ,ADO.NET就是一组类库, -->connection 用来连接数据库的类 语法:首先需要一个连接字符串 -->以SQL serv ...
- C语言 百人拉百灯问题
题目: 有100人,编号从1到100; 另有100盏灯,编号也从 1到100. 现要求每人去拉能被自己编号整除的所有电灯, 例如编号为1者应把所有的灯都拉一遍, 编号为2者应把所有编号为偶数的灯都拉一 ...
- [转]https方式使用git保存密码的方式
https方式每次都要输入密码,按照如下设置即可输入一次就不用再手输入密码的困扰而且又享受https带来的极速 设置记住密码(默认15分钟): git config --global credenti ...
- poj 1552 Doubles
#include <stdio.h> #include <stdlib.h> ]; int cmp(const void *a, const void *b) { return ...