zoj 1081 判断点在多边形内
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=81Points Within
Time Limit: 2 Seconds Memory Limit: 65536 KB
Statement of the Problem
Several drawing applications allow us to draw polygons and almost all of them allow us to fill them with some color. The task of filling a polygon reduces to knowing which points are inside it, so programmers have to colour only those points.
You're expected to write a program which tells us if a given point lies inside a given polygon described by the coordinates of its vertices. You can assume that if a point is in the border of the polygon, then it is in fact inside the polygon.
Input Format
The input file may contain several instances of the problem. Each instance consists of: (i) one line containing integers N, 0 < N < 100 and M, respectively the number of vertices of the polygon and the number of points to be tested. (ii) N lines, each containing a pair of integers describing the coordinates of the polygon's vertices; (iii) M lines, each containing a pair of integer coordinates of the points which will be tested for "withinness" in the polygon.
You may assume that: the vertices are all distinct; consecutive vertices in the input are adjacent in the polygon; the last vertex is adjacent to the first one; and the resulting polygon is simple, that is, every vertex is incident with exactly two edges and two edges only intersect at their common endpoint. The last instance is followed by a line with a 0 (zero).
Output Format
For the ith instance in the input, you have to write one line in the output with the phrase "Problem i:", followed by several lines, one for each point tested, in the order they appear in the input. Each of these lines should read "Within" or "Outside", depending on the outcome of the test. The output of two consecutive instances should be separated by a blank line.
Sample Input
3 1
0 0
0 5
5 0
10 2
3 2
4 4
3 1
1 2
1 3
2 2
0
Sample Output
Problem 1:
Outside
Problem 2:
Outside
Within
Source: South America 2001
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
题意就是判断是否在多边形内,是个的话就输出Within……
看书上敲的,不是太懂,没用到射线求交点稀里糊涂的就求出来了
先贴个好点的代码:转至:http://blog.csdn.net/zxy_snow/article/details/6339621
#include <queue>
#include <stack>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <limits.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int MAX = ;
const double eps = 1e-;
struct point
{
double x,y;
};
struct beeline
{
point a,b;
};
point p[MAX];
int n; bool dy(double x,double y) // x > y
{
return x > y + eps;
}
bool xy(double x,double y) // x < y
{
return x < y - eps;
}
bool dyd(double x,double y) // x >= y
{
return x > y - eps;
}
bool xyd(double x,double y) // x <= y
{
return x < y + eps;
}
bool dd(double x,double y) // x == y
{
return fabs( x - y ) < eps;
}
double crossProduct(point a,point b,point c)//向量 ac 在 ab 的方向
{
return (c.x - a.x)*(b.y - a.y) - (b.x - a.x)*(c.y - a.y);
}
bool onSegment(point a, point b, point c)
{
double maxx = max(a.x,b.x);
double maxy = max(a.y,b.y);
double minx = min(a.x,b.x);
double miny = min(a.y,b.y);
if( dd(crossProduct(a,b,c),0.0) && dyd(c.x,minx) && xyd(c.x,maxx) && dyd(c.y,miny) && xyd(c.y,maxy) )
return true;
return false;
}
bool segIntersect(point p1,point p2, point p3, point p4)
{
double d1 = crossProduct(p3,p4,p1);
double d2 = crossProduct(p3,p4,p2);
double d3 = crossProduct(p1,p2,p3);
double d4 = crossProduct(p1,p2,p4);
if( xy(d1 * d2,0.0) && xy( d3*d4,0.0 ) )
return true;
if( dd(d1,0.0) && onSegment(p3,p4,p1) )
return true;
if( dd(d2,0.0) && onSegment(p3,p4,p2) )
return true;
if( dd(d3,0.0) && onSegment(p1,p2,p3) )
return true;
if( dd(d4,0.0) && onSegment(p1,p2,p4) )
return true;
return false;
}
bool inPolygon(point pot)
{
int count = ;
beeline l;
l.a = pot;
l.b.x = 1e10;
l.b.y = pot.y;
p[n] = p[];
for(int i=; i<n; i++)
{
if( onSegment(p[i],p[i+],pot) )
return true;
if( !dd(p[i].y,p[i+].y) )//水平边不考虑
{
int tmp = -;
if( onSegment(l.a,l.b,p[i]) )//对于顶点与射线相交,该顶点应是所属边上纵坐标上较大的
tmp = i;
else if( onSegment(l.a,l.b,p[i+]) )
tmp = i+;
if( tmp != - && dd(p[tmp].y,max(p[i].y,p[i+].y)) )
count++;
else if( tmp == - && segIntersect(p[i],p[i+],l.a,l.b) )//相交
count++;
}
}
if( count % == )
return true;
return false;
}
int main()
{
int m;
int ind = ;
point pot;
while( ~scanf("%d",&n) && n )
{
if( ind != )
printf("\n");
scanf("%d",&m);
for(int i=; i<n; i++)
scanf("%lf %lf",&p[i].x,&p[i].y);
printf("Problem %d:\n",ind++);
while( m-- )
{
scanf("%lf %lf",&pot.x,&pot.y);
if( inPolygon(pot) )
printf("Within\n");
else
printf("Outside\n");
}
}
return ;
}
下面是我的代码,写的自己不是很懂
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <iostream>
#include <stdlib.h>
#include <map> #define eps 1.0e-5
inline double max(double a,double b){return a>b?a:b;}
inline double min(double a,double b){return a<b?a:b;}
inline double dabs(double a ){return a<?-a:a;} struct point
{
double x,y;
}; point poly[];
int n,m; bool online(const point &p1,const point &p2,const point &p3)
{
if(p2.x>=min(p1.x,p3.x)&&p2.x<=max(p1.x,p3.x)&&
p2.y>=min(p1.y,p3.y)&&p2.y<=max(p1.y,p3.y))
{
if(dabs((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))<=eps)
return true;
}
return false;
} bool insidepolygon(point p)
{
int count = ;
double xinters;
point p1,p2;
p1=poly[]; for(int i=;i<=n;i++)
{
p2=poly[i%n];
if(online(p1,p,p2))return true;
if(p.y>min(p1.y,p2.y))
{
if(p.y<=max(p1.y,p2.y))
{
if(p.x<=max(p1.x,p2.x))
{
if(p1.y!=p2.y)
{
xinters=(p.y-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;
//(p.y-p1.y)/(xinter-p1.x)=(p2.y-p1.y)/(p2.x-p1.x)斜率
if(p1.x == p2.x||p.x<=xinters)count++;
}
}
}
}
p1=p2;
}
if(count% == )
return false;
return true;
} int main()
{
int i,j;
point p;
int cas=;
while(scanf("%d",&n)!=EOF)
{
if(n == )break;
if(cas>)printf("\n");
printf("Problem %d:\n",cas++); scanf("%d",&m);
for(i=;i<n;i++)
{
scanf("%lf%lf",&poly[i].x,&poly[i].y);
} for(j=;j<m;j++)
{
scanf("%lf%lf",&p.x,&p.y);
if(insidepolygon(p))
{
printf("Within\n");
}
else
{
printf("Outside\n");
}
}
}
return ;
}
zoj 1081 判断点在多边形内的更多相关文章
- ZOJ 1081 Points Within | 判断点在多边形内
题目: 给个n个点的多边形,n个点按顺序给出,给个点m,判断m在不在多边形内部 题解: 网上有两种方法,这里写一种:射线法 大体的思想是:以这个点为端点,做一条平行与x轴的射线(代码中射线指向x轴正方 ...
- 判断点在多边形内算法的C++实现
目录 1. 算法思路 2. 具体实现 3. 改进空间 1. 算法思路 判断平面内点是否在多边形内有多种算法,其中射线法是其中比较好理解的一种,而且能够支持凹多边形的情况.该算法的思路很简单,就是从目标 ...
- hdu 1756:Cupid's Arrow(计算几何,判断点在多边形内)
Cupid's Arrow Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- php之判断点在多边形内的api
1.判断点在多边形内的数学思想:以那个点为顶点,作任意单向射线,如果它与多边形交点个数为奇数个,那么那个点在多边形内,相关公式: <?php class AreaApi{ //$area是一个多 ...
- POJ 2318 TOYS | 二分+判断点在多边形内
题意: 给一个矩形的区域(左上角为(x1,y1) 右下角为(x2,y2)),给出n对(u,v)表示(u,y1) 和 (v,y2)构成线段将矩形切割 这样构成了n+1个多边形,再给出m个点,问每个多边形 ...
- R树判断点在多边形内-Java版本
1.什么是RTree 待补充 2.RTree java依赖 rtree的java开源版本在GitHub上:https://github.com/davidmoten/rtree 上面有详细的使用说明 ...
- hdu 1756 判断点在多边形内 *
模板题 #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> ...
- A Round Peg in a Ground Hole - POJ 1584 (判断凸多边形&判断点在多边形内&判断圆在多边形内)
题目大意:首先给一个圆的半径和圆心,然后给一个多边形的所有点(多边形按照顺时针或者逆时针给的),求,这个多边形是否是凸多边形,如果是凸多边形在判断这个圆是否在这个凸多边形内. 分析:判断凸多边形可 ...
- matlab inpolygon 判断点在多边形内
如何判断一个点在多边形内部? xv= [0 3 3 0 0]; %x坐标 yv= [0 0 3 3 0];%y坐标 x=1.5; y=1.5; in=inpolygon(x,y,xv,yv) plot ...
随机推荐
- linux文件所属用户和组
使用chown命令可以修改文件或目录所属的用户: 命令:chown 用户 目录或文件名 例如:chown -R qq /home/qq (把home目录下的qq目录的拥有者改为qq用户) 使用chg ...
- api-ms-win-crt-runtimel1-1-0.dll缺失的解决方案
api-ms-win-crt-runtime就是MFC的运行时环境的库, 在windows上编译也是用微软的visual studio C++编译的软件, 底层也会用到微软提供的C++库和runtim ...
- 常用Git命令
Git教程:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 一般来说,日常使用只要 ...
- Android开发的进阶之路
客户端开发工程师,简单地从某几个方面描述一下个人理解里不同的等级: 1.初级的可以熟练使用系统框架提供的组件,搭建所需应用程序: 2.中级的,会对系统框架中如view绘制.broadcast机制.内存 ...
- IE6不支持CSS的属性选择器
input[type="text"] { width: 50px; } 测试IE6不生效,而IE7以上浏览器则没问题
- iOS完整App资源收集
前言 iOS开发学习者都希望得到实战训练,但是很多资料都是只有一小部分代码,并不能形成完成的App,笔者在此处收集了很多开源的完整的App,都有源代码哦! 本篇文章持续更新中,请持续关注.本篇所收集的 ...
- 使用 Bootstrap Typeahead 组件
Bootstrap 中的 Typeahead 组件就是通常所说的自动完成 AutoComplete,功能很强大,但是,使用上并不太方便.这里我们将介绍一下这个组件的使用. 第一,简单使用 首先,最简单 ...
- zend studio 注释快捷键
使用zend studio编写程序时,我们经常要做一些注释.zend studio为我们提供了行注释和块注释的快捷键ctrl+slash和ctrl+shift+slash,开始不明白什么是slash, ...
- Mysql-学习笔记(==》函数的建立与使用 十)
函数的建立与使用 USE db;SELECT sname,sscore,CASE WHEN sscore>=90 THEN '优秀'WHEN sscore>=70 THEN '良好'WHE ...
- ContentProvider官方教程(1)何时用content provider
Content Providers Content providers manage access to a structured set of data. They encapsulate the ...