Kingdom of Obsession

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Problem Description
There is a kindom of obsession, so people in this kingdom do things very strictly.

They name themselves in integer, and there are n people with their id continuous (s+1,s+2,⋯,s+n) standing in a line in arbitrary order, be more obsessively, people with id x wants to stand at yth position which satisfy

xmody=0

Is there any way to satisfy everyone's requirement?

 
Input
First line contains an integer T , which indicates the number of test cases.

Every test case contains one line with two integers n , s .

Limits
1≤T≤100 .
1≤n≤109 .
0≤s≤109 .

 
Output
For every test case, you should output 'Case #x: y', where x indicates the case number and counts from 1 and y is the result string.

If there is any way to satisfy everyone's requirement, y equals 'Yes', otherwise y equals 'No'.

 
Sample Input
2 5 14 4 11
 
Sample Output
Case #1: No Case #2: Yes
 
Source

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
const int N=2e5+10,M=1e6+10,inf=1e9+10,mod=1e9+7;
const ll INF=1e18+10;
int prime(int n)
{
if(n<=1)return 0;
if(n==2)return 1;
if(n%2==0)return 0;
int k, upperBound=n/2;
for(k=3; k<=upperBound; k+=2)
{
upperBound=n/k;
if(n%k==0)return 0;
}
return 1;
}
const int MAXN=1505;
map<int,int>linker;
map<int,int>used;
vector<int>mp[MAXN];
int uN;
bool dfs(int u)
{
for(int i=0;i<mp[u].size();i++)
{
if(!used[mp[u][i]])
{
used[mp[u][i]]=1;
if(linker[mp[u][i]]==0||dfs(linker[mp[u][i]]))
{
linker[mp[u][i]]=u;
return true;
}
}
}
return false;
}
int hungary()
{
int u;
int res=0;
linker.clear();
for(u=1;u<=uN;u++)
{
used.clear();
if(dfs(u)) res++;
}
return res;
}
int main()
{
int T,cas=1;
scanf("%d",&T);
while(T--)
{
for(int i=0;i<MAXN;i++)
mp[i].clear();
int n,s;
scanf("%d%d",&n,&s);
if(n>s)swap(n,s);
int p=0;
for(int i=s+1; i<=s+n; i++)
{
if(prime(i))
{
p++;
if(p>=2)break;
}
}
printf("Case #%d: ",cas++);
if(p>=2)
{
printf("No\n");
continue;
}
for(int i=s+1; i<=s+n; i++)
{
for(int j=1; j<=n; j++)
{
if(i%j==0)
{
mp[j].push_back(i);
}
}
}
uN=n;
int hh=hungary();
if(hh==n)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}

hdu 5943 Kingdom of Obsession 二分图匹配+素数定理的更多相关文章

  1. HDU 5943 Kingdom of Obsession 【二分图匹配 匈牙利算法】 (2016年中国大学生程序设计竞赛(杭州))

    Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  2. HDU 5943 Kingdom of Obsession

    题意:n个人编号为[s+1, s+n],有n个座位编号为[1,n],编号为 i 的人只能坐到编号为它的约数的座位,问每个人是否都有位置坐. 题解:由于质数只能坐到1或者它本身的位置上,所以如果[n+1 ...

  3. HDU 5938 Kingdom of Obsession(数论 + 二分图匹配)

    题意: 给定S,N,把S+1,S+2,...S+N这N个数填到1,2,...,N里,要求X只能填到X的因子的位置.(即X%Y=0,那么X才能放在Y位置) 问是否能够放满. 分析:经过小队的分析得出的结 ...

  4. hdu5943 Kingdom of Obsession 二分图+打表找规律

    题目传送门 Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

  5. hdu 3829 Cat VS Dog 二分图匹配 最大点独立集

    Cat VS Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Prob ...

  6. HDU 4685 Prince and Princess 二分图匹配+tarjan

    Prince and Princess 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4685 Description There are n pri ...

  7. HDU 2236 无题II(二分图匹配+二分)

    HDU 2236 无题II 题目链接 思路:行列仅仅能一个,想到二分图,然后二分区间长度,枚举下限.就能求出哪些边是能用的,然后建图跑二分图,假设最大匹配等于n就是符合的 代码: #include & ...

  8. TTTTTTTTTTTTTTTT hdu 5727 Necklace 阴阳珠 二分图匹配+暴力全排列

    Necklace Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  9. hdu 4619 Warm up 2 二分图匹配

    题目链接 给两种长方形, 水平的和垂直的, 大小都为1*2, n个水平的, m个垂直的, 给出它们的坐标. 水平的和垂直的可以相互覆盖, 但是同种类型的没有覆盖. 去掉一些长方形, 使得剩下的全部都没 ...

随机推荐

  1. 好用的 diskpart 命令,操作磁盘分区,并创建 EFI 引导分区

    进入 win8 pe, 或在安装 win8 选择安装磁盘分区时按 shift+F10,都是可能用到 diskpart 去操作的时候. 进入cmd后, diskpart 进入 list disk---- ...

  2. linux终端使用技巧

    Shift+Ctrl+T:新建标签页Shift+Ctrl+W:关闭标签页Ctrl+PageUp:前一标签页Ctrl+PageDown:后一标签页Shift+Ctrl+PageUp:标签页左移Shift ...

  3. Linux MTD系统剖析【转】

    转自:http://blog.csdn.net/lwj103862095/article/details/21545791 版权声明:本文为博主原创文章,未经博主允许不得转载. MTD,Memory ...

  4. taglib指令

    taglib:用来引用标签库并设置标签库的前缀,(允许JSP页面使用用户自定义标签) 语法:<%@ taglib uri="tagLibraryURI" prefix=&qu ...

  5. Centos修改镜像为国内的163源

    一.yum 简介    yum,是Yellow dog Updater, Modified 的简称,是杜克大学为了提高RPM 软件包安装性而开发的一种软件包管理器.起初是由yellow dog 这一发 ...

  6. ecshop销售排行调用促销价格和市场价格

    我们知道在ecshop某些产品销售之后,销售量高的产品销售出去之后,能形成销售排行,ecshop的销售排行必须保持两个条件,首先是ecshop的商品必须库存足够,其次商品该商品必须上架的. 我们分析如 ...

  7. POSTGRESQL9.5之pg_rman工具

    pg_rman是一款专门为postgresql设计的在线备份恢复的工具.其支持在线和基于时间点备份方式,还可以通过创建backup catalog来维护DB cluster备份信息. 看起来好像是模仿 ...

  8. hdwiki 编码规范

    编码规范         命名规范 1.1.主要的目录 control 里面是控制类 ,前台命名为something.php,则后台对应的是admin_+前台名称,名称应选有意义的英文单词,例如 前台 ...

  9. js中的各种获取日期

    JS中获取当前时间点前一天时间 var date=new Date(); var dat_year=date.getYear(); var dat_month=date.getMonth(); var ...

  10. c#之线程

    //Process[] pro= Process.GetProcesses(); //foreach (var item in pro) //{ // Console.WriteLine(item); ...