[主席树]HDOJ2665 && POJ2104 && POJ2761
主席树真是神奇的物种!
题意:给n、m
下面有n个数 (编号1到n)
有m个询问,询问的是上面的数的编号在[l,r]之间第k小的数
n、m的范围都是$10^5$
是主席树的入门题
借此来学习一下主席树
主席数利用函数式线段树来维护数列,一般用来解决区间第k大问题
空间时间的复杂度小于树套树(常数小)
划分树也可以解决区间第k大问题,但划分树不支持修改,主席树可以(用树状数组维护)
(这三道入门题都是无修改的)
我们先来YY一下这种求区间第k(大)小的题目···
最容易想到的做法就是对于每个询问,对[l, r]区间排个序,输出第k小
这样的复杂度是O($m\times nlogn$)


大家都很容易想到排序,但是对于每个询问每个区间排序的代价太大了...
再想想,让我们加入一些线段树的思想,
要求第k小,也就是与个数相关,那么我们可以 以[l,r]区间内的数的个数来建立一棵线段树
结点的值是数的个数,当我们要找第k小的数时,若左子树大于k,那么很显然第k小的数在左子树中;若左子树小于k,那么第k小的数在右子树中
建树的复杂度是O(nlogN),查询的复杂度是O(logN) (这里的N是不相同数的数量)
若我们仍对每个查询建树,那么复杂度丝毫没有降低(反而提高了),那有没有什么办法可以不要每次查询都建树呢?
(让我们联想一下前缀和) 假设我们知道[1, l-1]之间有多少个数比第k小的数小,那么我们只要减去这些数之后在[1, r]区间内第k小的数即是[l, r]区间内的第k小数
更确切的说,我们要求[l, r]区间内的第k小数 可以 用以[1, r]建立的线段树去减去以[1, l-1] 建立的线段树
这样能够减的条件是这两棵树必须是同构的。
若是不太明白, 我们来举个例子:
如有序列 1 2 5 1 3 2 2 5 1 2
我们要求 [5,10]第5小的数
(数列中不存在4、6、7、8 但根据原理就都写出来了,为方便理解,去掉了hash的步骤,实际的代码中其实只要一棵4个叶子节点的树即可)
(红色的为个数)
我们建立的[1, l-1] (也就是[1, 4])之间的树为

[1, r]也就是[1, 10]的树为

两树相减得到

我们来找第5小的数:
发现左子树为5 所以第5小的数在左边, 再往下(左4右1) 发现左边小于5了 ,所以第5小的数在右边 所以第5小的数就是3了
同样的,我们只要建立[1, i] (i是1到n之间的所有值)的所有树,每当询问[l, r]的时候,只要用[1, r]的树减去[1, l-1]的树,再找第k小就好啦
我们将这n个树看成是建立在一个大的线段树里的,也就是这个线段树的每个节点都是一个线段树( ——这就是主席树)
最初所有的树都是空树,我们并不需要建立n个空树,只要建立一个空树,也就是不必每个节点都建立一个空树
插入元素时,我们不去修改任何的结点,而是返回一个新的树( ——这就是函数式线段树)
因为每个节点都不会被修改,所以可以不断的重复用,因此插入操作的复杂度为O(logn)
总的复杂度为O((n+m)lognlogN) (听说 主席树的芭比说 加上垃圾回收, 可以减少一个log~~~ 然而这只是听说)
你以为这样就结束了吗!!
你没有发现这样空间大到爆炸吗!!!
你在每个节点都建了一个线!段!树!这不MLE才有鬼呢!!!
那怎么办呢?
$T_i$表示一棵[1, i]区间的线段树
那么$T_i$与$T_{i-1}$的区别就只有当前插入的这个元素$a_i$以及它的父亲以及他父亲的父亲以及他父亲的父亲的父亲...
也就是改变的就只有他和他上面logn个数
所以,我们并不需要建一整棵树,我们只需要 单独建立logn个结点,跟$T_{i-1}$连起来就好了
这样树的空间复杂度(NlogN)
以下是代码:
#define lson l, m
#define rson m+1, r
const int N=1e5+;
int L[N<<], R[N<<], sum[N<<];
int tot;
int a[N], T[N], Hash[N];
int build(int l, int r)
{
int rt=(++tot);
sum[rt]=;
if(l<r)
{
int m=(l+r)>>;
L[rt]=build(lson);
R[rt]=build(rson);
}
return rt;
} int update(int pre, int l, int r, int x)
{
int rt=(++tot);
L[rt]=L[pre], R[rt]=R[pre], sum[rt]=sum[pre]+;
if(l<r)
{
int m=(l+r)>>;
if(x<=m)
L[rt]=update(L[pre], lson, x);
else
R[rt]=update(R[pre], rson, x);
}
return rt;
} int query(int u, int v, int l, int r, int k)
{
if(l>=r)
return l;
int m=(l+r)>>;
int num=sum[L[v]]-sum[L[u]];
if(num>=k)
return query(L[u], L[v], lson, k);
else
return query(R[u], R[v], rson, k-num);
} int main()
{
// int t;
// scanf("%d", &t);
// while(t--)
// {
tot=;
int n, m;
scanf("%d%d", &n, &m);
for(int i=; i<=n; i++)
{
scanf("%d", &a[i]);
Hash[i]=a[i];
}
sort(Hash+, Hash+n+);
int d=unique(Hash+, Hash+n+)-Hash-;
T[]=build(, d);
for(int i=; i<=n; i++)
{
int x=lower_bound(Hash+, Hash+d+, a[i])-Hash;
T[i]=update(T[i-], , d, x);
}
while(m--)
{
int l, r, k;
scanf("%d%d%d", &l, &r, &k);
int x=query(T[l-], T[r], , d, k);
printf("%d\n", Hash[x]);
}
// }
}
POJ 2104 && HDOJ 2665 && POJ 2761
[主席树]HDOJ2665 && POJ2104 && POJ2761的更多相关文章
- 主席树:POJ2104 K-th Number (主席树模板题)
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 44952 Accepted: 14951 Ca ...
- 算法总结——主席树(poj2104)
题目: Description You are working for Macrohard company in data structures department. After failing y ...
- poj2104&&poj2761 (主席树&&划分树)主席树静态区间第k大模板
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 43315 Accepted: 14296 Ca ...
- 主席树模板(poj2104)
主席树是可持久化线段树,可以记录线段树的历史版本. 代码中和线段树不同的是,l,r记录的是左右子树编号,因为普通的线段树版本中,左右子树自然就是o<<1和o<<1|1,但是主席 ...
- 【POJ2104】【HDU2665】K-th Number 主席树
[POJ2104][HDU2665]K-th Number Description You are working for Macrohard company in data structures d ...
- 【POJ2104】K-th Number(主席树)
题意:有n个数组成的序列,要求维护数据结构支持在线的下列两种操作: 1:单点修改,将第x个数修改成y 2:区间查询,询问从第x个数到第y个之间第K大的数 n<=100000,a[i]<=1 ...
- poj2104 k-th number 主席树入门讲解
poj2104 k-th number 主席树入门讲解 定义:主席树是一种可持久化的线段树 又叫函数式线段树 刚开始学是不是觉得很蒙逼啊 其实我也是 主席树说简单了 就是 保留你每一步操作完成之后 ...
- POJ2104 K-th Number(主席树)
题目 Source http://poj.org/problem?id=2104 Description You are working for Macrohard company in data s ...
- POJ2104 K-th Number[主席树]【学习笔记】
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 51440 Accepted: 17594 Ca ...
随机推荐
- 集成友盟分享SDK报错
删除4.2.1版本的reference换成4.3版本运行报错 解决办法:要将4.2.1版本的全部库文件物理删除,不要只删除reference.
- MVC4.0 利用IActionFilter实现简单的后台操作日志功能
首先我们要了解MVC提供了4种常用的拦截器:IActionFilter(Action拦截器接口).IExceptionFilter(异常拦截器接口).IResultFilter(Result拦截器接口 ...
- Linux Shell常用技巧(目录)
Linux Shell常用技巧(一) http://www.cnblogs.com/stephen-liu74/archive/2011/11/10/2240461.html一. 特殊文件: /dev ...
- STL学习系列四:Stack容器
Stack简介 stack是堆栈容器,是一种“先进后出”的容器. stack是简单地装饰deque容器而成为另外的一种容器. #include <stack> 1.stack对象的默认构造 ...
- 微软职位内部推荐-SW Engineer II for Cloud Servi
微软近期Open的职位: Do you have a passion for embedded devices and services?   Does the following m ...
- Linux 硬盘分区、分区、删除分区、格式化、挂载、卸载
Linux 虽然一直都有在玩,但是对硬盘操作确实不是很熟悉今天有空,就整理了下. 1,创建分区 先查看下是否有磁盘没有分区 fdisk -l 其中第一个框和第二个框,是已经分好区的磁盘,第三个硬盘没有 ...
- OS X 使用技巧——在Finder窗口标题栏上显示路径
Finder窗口默认显示当前文件夹的名称或当前所在的模式(例如AirDrop).如果想要显示路径(用User/[当前用户账号名称]/Documents 替代以前显示的Documents),打开终端并运 ...
- selenium IDE--录制和回放脚本
1 selenium IDE--录制脚本 准备工作:firefox 浏览器安装了selenium IDE 插件 实例:打开百度搜索“软件测试” firefox浏览器打开网址:https://www.b ...
- SqlServer 临时表、表变量、函数 替代游标
http://www.cnblogs.com/chongzi/archive/2011/01/19/1939106.html 临时表 存放在tempdb中 --存储过程中将多表连接结果写入到临时表中, ...
- 【Python】代码调试(pdb与logging使用)
一.pdb使用 pdb 是 python 自带的一个包,为 python 程序提供了一种交互的源代码调试功能,主要特性包括设置断点.单步调试.进入函数调试.查看当前代码.查看栈片段.动态改变变量的值等 ...