/*
In this problems, we’ll talk about BIG numbers. Yes, I’m sorry, big numbers again…. Let N be a positive integer, we call S=NN the “big big power” of N. In this time, I will calculate the exact value of S for a positive integer N. Then, I tell you S, you guess N.
Note that I may make mistakes in calculating, but I promise that if I’m wrong, my result and the correct result will differ in exactly one single digit, and the number of digits is always correct(no missing or extra digits). That means, I will NOT get ‘terribly wrong result’ such as 3456 or 111.

Input

The first line in the input contains a positive integer T indicating the number of test cases (1<=T<=10). Each case consists of a single line containing the exact value of S. The line does not contain any character apart from digits (0,1,2...9), and will have at most 500,000 digits. Input integers do NOT contain leading zeros.

Output

For each test case, print on a single line the value of N if a unique N satisfying N^N=S can be found. Otherwise, print -1 in the corresponding line, showing that I made a mistake in calculating.

Sample Input

4
3
4
3225
387420489

Sample Output

-1
2
-1
9

Thought: for any number N greater than 3, the number of digits of N^N is different from each other. We can first check the number of digits of S to see if the number of digits is possible. Then check mod(S,N) is zero.

*/

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm> // std::find
#include <vector> // std::vector
using namespace std; int NN[100005],length;
char number[500005]; int digits(char *str){
int ans = std::distance(NN,std::find(NN+3,NN+100002,length)); //find the index of element in an array
if(ans) return ans;
return -1; }
int verify(char *str,int res){
int n=0;
for(int i=0;i<length;i++){
n=n*10+number[i]-'0'; // mod of large number
n%=res;
}
if(n%res) return 0;
return 1;
} int main(){
int T;
memset(NN,0,sizeof(NN));
for(int i=3;i<=100000;i++){
NN[i]=int(i*log10(i))+1;
}
scanf("%d",&T);
while(T–){
scanf("%s",&number);
length = strlen(number);
if(length==1){
if(number[0]=='0'){
printf("0\n");
continue;
}else if(number[0]=='1'){
printf("1\n");
continue;
}else if(number[0]=='4'){
printf("2\n");
continue;
}else{
printf("-1\n");
continue;
}
}else{
int result = digits(number);
if(result>0) {
if(verify(number,result))
printf("%d\n", result);
else printf("-1\n");
}
else printf("-1\n");
} }
return 0;
}

ZOJ1238 Guess the Number的更多相关文章

  1. JavaScript Math和Number对象

    目录 1. Math 对象:数学对象,提供对数据的数学计算.如:获取绝对值.向上取整等.无构造函数,无法被初始化,只提供静态属性和方法. 2. Number 对象 :Js中提供数字的对象.包含整数.浮 ...

  2. Harmonic Number(调和级数+欧拉常数)

    题意:求f(n)=1/1+1/2+1/3+1/4-1/n   (1 ≤ n ≤ 108).,精确到10-8    (原题在文末) 知识点:      调和级数(即f(n))至今没有一个完全正确的公式, ...

  3. Java 特定规则排序-LeetCode 179 Largest Number

    Given a list of non negative integers, arrange them such that they form the largest number. For exam ...

  4. Eclipse "Unable to install breakpoint due to missing line number attributes..."

    Eclipse 无法找到 该 断点,原因是编译时,字节码改变了,导致eclipse无法读取对应的行了 1.ANT编译的class Eclipse不认,因为eclipse也会编译class.怎么让它们统 ...

  5. 移除HTML5 input在type="number"时的上下小箭头

    /*移除HTML5 input在type="number"时的上下小箭头*/ input::-webkit-outer-spin-button, input::-webkit-in ...

  6. iOS---The maximum number of apps for free development profiles has been reached.

    真机调试免费App ID出现的问题The maximum number of apps for free development profiles has been reached.免费应用程序调试最 ...

  7. 有理数的稠密性(The rational points are dense on the number axis.)

    每一个实数都能用有理数去逼近到任意精确的程度,这就是有理数的稠密性.The rational points are dense on the number axis.

  8. [LeetCode] Minimum Number of Arrows to Burst Balloons 最少数量的箭引爆气球

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  9. [LeetCode] Number of Boomerangs 回旋镖的数量

    Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple of po ...

随机推荐

  1. java中的native方法和修饰符(转)

    Java中的native修饰符 今天偶然看代码,发现别人有这样写的方法,并且jar里面有几个dll文件,比较奇怪,于是把代码打开,发现如下写法. public native String GSMMod ...

  2. Redis系列-存储篇sorted set主要操作函数小结

    redis支持有序集合,即sorted set.sorted set在set的基础上,增加了排序属性,是set的升级版.这里简要谈谈sorted set的常用函数: 1)insert a)  zadd ...

  3. SQL SERVER 创建作业

    ),,                ,            ,     , ,      ),SERVERPROPERTY(N,                ,            ,     ...

  4. dedecms5.7安装百度(ueditor)编辑器的方法

    第一步:下载相对应编辑器的版本 第二步:修改inc_func_funcAdmin.php文件 打开include下的inc文件夹内的inc_func_funcAdmin.php找到184行,贴入以下代 ...

  5. discuz 系列产品 在ie9下注册成功后不跳转bug处理

    header.htm 把 <meta http-equiv="x-ua-compatible" content="ie=7" /> 改为 <m ...

  6. Phonebook 导入SD上的.vcf联系人

    2014-01-11 17:29:22 1. 当用户选择Phonebook中从SD卡导入联系人的操作后,程序回调转到ImportVCardActivity,然后用户选择好要导入的.vcf文件,并点击“ ...

  7. Visual studio 2013的安装和单元测试

    vs2013安装过程: 简单的单元测试: 1.创建新的c#类库 2.创建单元测试 3.测试结果 单元测试结束

  8. root运行chrome

    os:centos7 edit file : /usr/bin/google-chrome Add "--user-data-dir" (without the quotes) a ...

  9. centos ssh 无密码登录

    在linux系统中,ssh是远程登录的默认工具,因为该工具的协议使用了RSA/DSA的加密算法.该工具做linux系统的远程管理是非常安全的.telnet,因为其不安全性,在linux系统中被搁置使用 ...

  10. ios 8+ (xcode 6.0 +)应用程序Ad Hoc 发布前多设备测试流程详解

    我们开发的程序在经过simulator以及自己的iOS设备测试后,也基本完成应用程序了,这时候我们就可以把它发布出去了更更多的人去测试,我们可以在iOS平台使用ad hoc实现. 你在苹果购买的开发者 ...