给你一个凸多边形,问在里面距离凸边形最远的点。

方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可。

#pragma warning(disable:4996)
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <string>
#include <algorithm>
using namespace std; #define maxn 2500
#define eps 1e-7 int n; int dcmp(double x){
return (x > eps) - (x < -eps);
} struct Point
{
double x, y;
Point(){}
Point(double _x, double _y) :x(_x), y(_y){}
Point operator + (const Point &b) const{
return Point(x + b.x, y + b.y);
}
Point operator - (const Point &b) const{
return Point(x - b.x, y - b.y);
}
Point operator *(double d) const{
return Point(x*d, y*d);
}
Point operator /(double d) const{
return Point(x / d, y / d);
}
double det(const Point &b) const{
return x*b.y - y*b.x;
}
double dot(const Point &b) const{
return x*b.x + y*b.y;
}
Point rot90(){
return Point(-y, x);
}
Point norm(){
double len=sqrt(this->dot(*this));
return Point(x, y) / len;
}
void read(){
scanf("%lf%lf", &x, &y);
}
}; #define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))
#define crossOp(p1,p2,p3) (dcmp(cross(p1,p2,p3))) Point isSS(Point p1, Point p2, Point q1, Point q2){
double a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
return (p1*a2 + p2*a1) / (a1 + a2);
} struct Border
{
Point p1, p2;
double alpha;
void setAlpha(){
alpha = atan2(p2.y - p1.y, p2.x - p1.x);
}
}; bool operator < (const Border &a,const Border &b) {
int c = dcmp(a.alpha - b.alpha);
if (c != 0) {
return c == 1;
}
else {
return crossOp(b.p1, b.p2, a.p1) > 0;
}
} bool operator == (const Border &a, const Border &b){
return dcmp(a.alpha - b.alpha) == 0;
} Point isBorder(const Border &a, const Border &b){
return isSS(a.p1, a.p2, b.p1, b.p2);
} Border border[maxn];
Border que[maxn];
int qh, qt;
// check函数判断的是新加的半平面和由a,b两个半平面产生的交点的方向,若在半平面的左侧返回True
bool check(const Border &a, const Border &b, const Border &me){
Point is = isBorder(a, b);
return crossOp(me.p1, me.p2, is) > 0;
} bool convexIntersection()
{
qh = qt = 0;
sort(border, border + n);
n = unique(border, border + n) - border;
for (int i = 0; i < n; i++){
Border cur = border[i];
while (qh + 1 < qt&&!check(que[qt - 2], que[qt - 1], cur)) --qt;
while (qh + 1 < qt&&!check(que[qh], que[qh + 1], cur)) ++qh;
que[qt++] = cur;
}
while (qh + 1 < qt&&!check(que[qt - 2], que[qt - 1], que[qh])) --qt;
while (qh + 1 < qt&&!check(que[qh], que[qh + 1], que[qt - 1])) ++qh;
return qt - qh > 2;
} Point ps[maxn]; bool judge(double x)
{
for (int i = 0; i < n; i++){
border[i].p1 = ps[i];
border[i].p2 = ps[(i + 1) % n];
}
for (int i = 0; i < n; i++){
Point vec = border[i].p2 - border[i].p1;
vec=vec.rot90().norm();
vec = vec*x;
border[i].p1 = border[i].p1 + vec;
border[i].p2 = border[i].p2 + vec;
border[i].setAlpha();
}
return convexIntersection();
} int main()
{
while (cin>>n&&n)
{
for (int i = 0; i < n; i++){
ps[i].read();
}
double l=0, r=100000000;
while (dcmp(r-l)>0){
double mid = (l + r) / 2;
if (judge(mid)) l = mid;
else r = mid;
}
printf("%.6lf\n", l);
}
return 0;
}

POJ3525 Most Distant Point from the Sea(半平面交)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  2. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  3. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  4. poj3525 Most Distant Point from the Sea

    题目描述: vjudge POJ 题解: 二分答案+半平面交. 半径范围在0到5000之间二分,每次取$mid$然后平移所有直线,判断半平面交面积是否为零. 我的eps值取的是$10^{-12}$,3 ...

  5. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  6. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  7. POJ3525-Most Distant Point from the Sea(二分+半平面交)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   ...

  8. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  9. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

随机推荐

  1. Red Gate Software 软件推荐

    这家公司的Wiki http://en.wikipedia.org/wiki/Redgate http://www.red-gate.com/products/ 好吧 就介绍点免费的 Find SQL ...

  2. 算法系列5《SSF33》

    SSF33算法是以128位分组为单位进行运算,密钥长度为16字节,该算法也可以被用于安全报文传送和MAC机制密文运算. 使用SSF33算法和基于3-DES的对称加密机制使用相同长度的密钥,能够同原有的 ...

  3. jdbc 连接 oracle rac

    jdbc 连接 oracle rac 的连接串如下:   jdbc:oracle:thin:@(DESCRIPTION =(ADDRESS = (PROTOCOL = TCP)(HOST = 192. ...

  4. [原创]在Windows和Linux中搭建PostgreSQL源码调试环境

    张文升http://ode.cnblogs.comEmail:wensheng.zhang#foxmail.com 配图太多,完整pdf下载请点这里 本文使用Xming.Putty和VMWare几款工 ...

  5. ListView与GridView异步加载图片

    原理很简单,主要是用到了回调方法,下面是异步加载图片的类 <span style="font-size:16px;">package com.xxx.xxx; impo ...

  6. 自定义debug信息

    #ifdef  DEBUG  #define debug(fmt,args...)  printk(fmt ,##args)  #define debugX(level,fmt,args...) if ...

  7. Mysql去除重复

    常用的有两种方法,第一种就是select distinct name from table.但是有时候我们要返回多个字段时就用第二种方法select *, count(distinct name) f ...

  8. win32 sdk显示一个载入的位图的方法

    注:整理自网络文档 (1)加载位图 HANDLE LoadImage(HINSTANCE 来源实体,LPCTSTR 名称,UINT 位图类型, int 加载宽度,int 加载高度,UINT 加载方式) ...

  9. algorithm之不变序列操作

    概述:不变序列算法,参见http://www.cplusplus.com/reference/algorithm/ /* std::for_each template <class InputI ...

  10. TWaver初学实战——基于HTML5的交互式地铁图

    每天坐地铁,经常看地铁图,有一天突然想到,地铁图不也是一种拓扑结果吗?TWaver到底能与地铁图擦出怎样的火花呢?   想到就干,先到网上找幅参考图.各种风格的地铁图还挺多,甚至有大学生自主设计制作, ...