题意:给n和k,求组合C(n,k)的因子个数。

这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE。
所以得用别的方法。

在说方法前,先说一个n!的性质:
n!的素因子分解中的素数p的个数为
n/p+n/(p^2)+...+n/(p^k)+...

《ACM-ICPC程序设计系列 数论及应用》上的方法,200+ms:
首先先求解435以内的素因子。
然后预处理出j!中每个素因子的个数,公式如下:
num[j][i]=j/prime[i]+num[j/prime[i]][i];

设n!中素因子p的个数为:a=n/p+n/(p^2)+...+n/(p^k)+...
那么(n/p)!中素因子p的个数为:b=n/(p^2)+...+n/(p^k)+...
很显然a=b+n/p,因此可以利用上述递推公式预处理出所有的j!中每个素因子的个数。

接下来就可以预处理出C(i,j)的因子个数,然后一切就好办了。

#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std;
const int maxn=;
bool isprime[maxn];
int prime[maxn];
int cnt=;
int num[maxn][maxn]; //num[i][j]表示i!中素因子prime[j]的个数。
long long C[maxn][maxn]; //C[i][j](0<=j<=i)表示组合C(i,j)的因子个数。
void init(){
memset(isprime,true,sizeof(isprime));
for(int i=;i<maxn;i++){
if(isprime[i]){
prime[cnt++]=i;
for(int j=i*;j<maxn;j+=i)
isprime[j]=false;
}
}
memset(num,,sizeof(num));
for(int i=;i<cnt;i++){
for(int j=;j<maxn;j++)
num[j][i]=j/prime[i]+num[j/prime[i]][i];
}
//预处理出C(i,j)的因子个数
for(int i=;i<maxn;i++){
for(int j=;j<i;j++){
C[i][j]=;
for(int k=;k<cnt;k++){
int d=num[i][k]-num[i-j][k]-num[j][k];
if(d)
C[i][j]*=d+;
}
}
}
}
int main()
{
init();
int n,k;
while(scanf("%d%d",&n,&k)!=EOF){
if(n==k ||k==)
printf("1\n");
else
printf("%I64d\n",C[n][k]);
}
return ;
}

我的方法没有预处理,每次读取n和k后,利用公式计算n!,k!,(n-k)!的各个因素的个数,最后再总的求。时间600多ms。

#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std;
const int maxn=;
bool isprime[maxn];
int prime[maxn];
int cnt=;
int num[maxn];
void init(){
memset(isprime,true,sizeof(isprime));
for(int i=;i<maxn;i++){
if(isprime[i]){
prime[cnt++]=i;
for(int j=i*;j<maxn;j+=i)
isprime[j]=false;
}
}
}
//求n!的各个素因子的个数
void countnum1(int n){
for(int i=;i<cnt && prime[i]<=n;i++){
int c=,p=prime[i];
while(n/p){
c+=n/p;
p*=prime[i];
}
num[prime[i]]+=c; //在分子上,是+=c。 }
}
void countnum2(int n){
for(int i=;i<cnt && prime[i]<=n;i++){
int c=,p=prime[i];
while(n/p){
c+=n/p;
p*=prime[i];
}
num[prime[i]]-=c; //分母,是-=c
}
}
int main()
{
init();
int n,k;
while(scanf("%d%d",&n,&k)!=EOF){
memset(num,,sizeof(num));
countnum1(n);
countnum2(n-k);
countnum2(k);
long long ret=;
for(int i=;i<cnt;i++){
if(num[prime[i]]){
ret*=(num[prime[i]]+);
}
}
printf("%I64d\n",ret);
}
return ;
}

POJ 2992 Divisors (求因子个数)的更多相关文章

  1. Trailing Zeroes (I) LightOJ - 1028(求因子个数)

    题意: 给出一个N 求N有多少个别的进制的数有后导零 解析: 对于一个别的进制的数要转化为10进制 (我们暂且只分析二进制就好啦) An * 2^(n-1) + An-1 * 2^(n-2) + `` ...

  2. Almost All Divisors(求因子个数及思维)

    ---恢复内容开始--- We guessed some integer number xx. You are given a list of almost all its divisors. Alm ...

  3. LightOj1028 - Trailing Zeroes (I)---求因子个数

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1028 题意:给你一个数 n (1<=n<=10^12), 然后我们可以把它 ...

  4. Easy Number Challenge(暴力,求因子个数)

    Easy Number Challenge Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I ...

  5. poj 2992 Divisors (素数打表+阶乘因子求解)

    Divisors Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9617   Accepted: 2821 Descript ...

  6. poj 2992 Divisors 整数分解

    设m=C(n,k)=n!/((n-k)!*k!) 问题:求m的因数的个数 将m分解质因数得到 p1有a1个 p2有a2个 .... 因为每一个质因数能够取0~ai个(所有取0就是1,所有取ai就是m) ...

  7. POJ 2992 Divisors

    每个数都可以分解成素数的乘积: 写成指数形式:n=p1^e1*p2^e2*...*pn^en:(p都是素数) 那么n的因数的数量m=(e1+1)*(e2+1)*...*(en+1): 所以用筛选法筛出 ...

  8. HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形

    A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...

  9. Divisors (求解组合数因子个数)【唯一分解定理】

    Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...

随机推荐

  1. 【设计模式】策略模式 (Strategy Pattern)

    策略模式是一种很简单的基础模式,用于封装一系列算法,使客户端的访问独立于算法的实现.我们可以”井中取水”来形象的描述策略模式.“取水”是一个动作,完成这个动作的方式有很多中,可以直接用手提.可以用水车 ...

  2. webpack 学习笔记 02 快速入门

    webpack 的目标 将依赖项分块,按需加载. 减少web app的初始加载时间. 使每一个静态集合都能够作为组件使用. 有能力集成第三方库,作为组件使用. 高度可配置化. 适用于大型项目. INS ...

  3. Linux 配置 vimrc

    由于熟悉了Windows下利用编译器进行编程,所以在刚刚接触Linux后的编程过程中会感觉其vim编译器的各种不方便编写程序,在逐渐的学习过程中了解到可以通过配置vimrc使得vim编译时类似于VS. ...

  4. HTTP网页错误代码大全带解释

    HTTP网页错误代码大全带解释 HTTP 400 - 请求无效HTTP 401.1 - 未授权:登录失败HTTP 401.2 - 未授权:服务器配置问题导致登录失败HTTP 401.3 - ACL 禁 ...

  5. supplicant

    概述 wpa_supplicant是wifi客户端(client)加密认证工具,和iwconfig不同,wpa_supplicant支持wep.wpa.wpa2等完整的加密认证,而iwconfig只能 ...

  6. wpa_supplicant软件架构分析

    wpa_supplicant软件架构分析 1. 启动命令 wpa supplicant 在启动时,启动命令可以带有很多参数,目前我们的启动命令如下: wpa_supplicant /system/bi ...

  7. extension 的一个应用 - 优化图片的读取机制

    枚举和 extension 都是 swift 中非常好用的特性.这里我们就来讨论一个应用的例子,供大家参考. 我们在开发 app 的时候,都会用到各种图片资源,而我们读取图片资源时主要是通过UIIma ...

  8. iOS8中如何将状态栏的字体颜色改为白色

    网上的一些方法在我这行不通, 比如: UIApplication.sharedApplication().statusBarStyle = UIStatusBarStyle.LightContent ...

  9. Linux内核内存管理

    <Linux内核设计与实现>读书笔记(十二)- 内存管理   内核的内存使用不像用户空间那样随意,内核的内存出现错误时也只有靠自己来解决(用户空间的内存错误可以抛给内核来解决). 所有内核 ...

  10. ASP.NET Web API 实例

    ASP.NET Web API 入门大杂烩 创建Web API解决方案,命名为VCoinWebApi,并且创建了同名的Project,然后,创建一个Empty Project:Models,创建一个W ...