POJ 2992 Divisors (求因子个数)
题意:给n和k,求组合C(n,k)的因子个数。
这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE。
所以得用别的方法。
在说方法前,先说一个n!的性质:
n!的素因子分解中的素数p的个数为
n/p+n/(p^2)+...+n/(p^k)+...
《ACM-ICPC程序设计系列 数论及应用》上的方法,200+ms:
首先先求解435以内的素因子。
然后预处理出j!中每个素因子的个数,公式如下:
num[j][i]=j/prime[i]+num[j/prime[i]][i];
设n!中素因子p的个数为:a=n/p+n/(p^2)+...+n/(p^k)+...
那么(n/p)!中素因子p的个数为:b=n/(p^2)+...+n/(p^k)+...
很显然a=b+n/p,因此可以利用上述递推公式预处理出所有的j!中每个素因子的个数。
接下来就可以预处理出C(i,j)的因子个数,然后一切就好办了。
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std;
const int maxn=;
bool isprime[maxn];
int prime[maxn];
int cnt=;
int num[maxn][maxn]; //num[i][j]表示i!中素因子prime[j]的个数。
long long C[maxn][maxn]; //C[i][j](0<=j<=i)表示组合C(i,j)的因子个数。
void init(){
memset(isprime,true,sizeof(isprime));
for(int i=;i<maxn;i++){
if(isprime[i]){
prime[cnt++]=i;
for(int j=i*;j<maxn;j+=i)
isprime[j]=false;
}
}
memset(num,,sizeof(num));
for(int i=;i<cnt;i++){
for(int j=;j<maxn;j++)
num[j][i]=j/prime[i]+num[j/prime[i]][i];
}
//预处理出C(i,j)的因子个数
for(int i=;i<maxn;i++){
for(int j=;j<i;j++){
C[i][j]=;
for(int k=;k<cnt;k++){
int d=num[i][k]-num[i-j][k]-num[j][k];
if(d)
C[i][j]*=d+;
}
}
}
}
int main()
{
init();
int n,k;
while(scanf("%d%d",&n,&k)!=EOF){
if(n==k ||k==)
printf("1\n");
else
printf("%I64d\n",C[n][k]);
}
return ;
}
我的方法没有预处理,每次读取n和k后,利用公式计算n!,k!,(n-k)!的各个因素的个数,最后再总的求。时间600多ms。
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std;
const int maxn=;
bool isprime[maxn];
int prime[maxn];
int cnt=;
int num[maxn];
void init(){
memset(isprime,true,sizeof(isprime));
for(int i=;i<maxn;i++){
if(isprime[i]){
prime[cnt++]=i;
for(int j=i*;j<maxn;j+=i)
isprime[j]=false;
}
}
}
//求n!的各个素因子的个数
void countnum1(int n){
for(int i=;i<cnt && prime[i]<=n;i++){
int c=,p=prime[i];
while(n/p){
c+=n/p;
p*=prime[i];
}
num[prime[i]]+=c; //在分子上,是+=c。 }
}
void countnum2(int n){
for(int i=;i<cnt && prime[i]<=n;i++){
int c=,p=prime[i];
while(n/p){
c+=n/p;
p*=prime[i];
}
num[prime[i]]-=c; //分母,是-=c
}
}
int main()
{
init();
int n,k;
while(scanf("%d%d",&n,&k)!=EOF){
memset(num,,sizeof(num));
countnum1(n);
countnum2(n-k);
countnum2(k);
long long ret=;
for(int i=;i<cnt;i++){
if(num[prime[i]]){
ret*=(num[prime[i]]+);
}
}
printf("%I64d\n",ret);
}
return ;
}
POJ 2992 Divisors (求因子个数)的更多相关文章
- Trailing Zeroes (I) LightOJ - 1028(求因子个数)
题意: 给出一个N 求N有多少个别的进制的数有后导零 解析: 对于一个别的进制的数要转化为10进制 (我们暂且只分析二进制就好啦) An * 2^(n-1) + An-1 * 2^(n-2) + `` ...
- Almost All Divisors(求因子个数及思维)
---恢复内容开始--- We guessed some integer number xx. You are given a list of almost all its divisors. Alm ...
- LightOj1028 - Trailing Zeroes (I)---求因子个数
题目链接:http://lightoj.com/volume_showproblem.php?problem=1028 题意:给你一个数 n (1<=n<=10^12), 然后我们可以把它 ...
- Easy Number Challenge(暴力,求因子个数)
Easy Number Challenge Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I ...
- poj 2992 Divisors (素数打表+阶乘因子求解)
Divisors Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9617 Accepted: 2821 Descript ...
- poj 2992 Divisors 整数分解
设m=C(n,k)=n!/((n-k)!*k!) 问题:求m的因数的个数 将m分解质因数得到 p1有a1个 p2有a2个 .... 因为每一个质因数能够取0~ai个(所有取0就是1,所有取ai就是m) ...
- POJ 2992 Divisors
每个数都可以分解成素数的乘积: 写成指数形式:n=p1^e1*p2^e2*...*pn^en:(p都是素数) 那么n的因数的数量m=(e1+1)*(e2+1)*...*(en+1): 所以用筛选法筛出 ...
- HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...
- Divisors (求解组合数因子个数)【唯一分解定理】
Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...
随机推荐
- java reflect 初始学习 动态加载类
首先要理解Class类: 在java 的反射中,Class.forName("com.lilin.Office") 使用类的全名,这样获取,不仅仅表示了类的类类型,同时还代表着类的 ...
- Windows Phone8.1 SDK中的新控件
前言 WP8.1对开发者的影响要远大于对用户的影响.这篇博客就来一起看看哪些WP8.0中的控件被移除或替换,这些控件的介绍在MSDN上都非常的详细,所以这里只给出一些简单的介绍,来对比8.1 ...
- C#.Net 图片处理大全
C# How to: Image filtering by directly manipulating Pixel ARGB values C# How to: Image filtering imp ...
- GNU make 总结 (五)
一.使用make更新静态库 静态库文件是一些.o文件的集合,在Linux中使用ar工具对它进行维护管理.一个静态库通常由多个.o文件组成,这些.o文件可独立的被作为一个规则的目标,库成员作为目标时需要 ...
- OA Framework - How to Find the Correct Version of JDeveloper to Use with E-Business Suite 11i or Release 12.x (Doc ID 416708.1)
APPLIES TO: Oracle Applications Framework - Version 11.5.10.0 to 12.2.2 [Release 11.5.10 to 12.2] In ...
- Notes of the scrum meeting(12.5)
meeting time:18:00~18:30p.m.,December 5th,2013 meeting place:3号公寓一层 attendees: 顾育豪 ...
- 常见的百度蜘蛛IP
根据不同的IP我们可以分析网站是个怎样的状态, 以下常见的百度蜘蛛IP: 123.125.68.*这个蜘蛛经常来,别的来的少,表示网站可能要进入沙盒了,或被者降权. 220.181.68.*每天这个I ...
- 【Subsets II】cpp
题目: Given a collection of integers that might contain duplicates, nums, return all possible subsets. ...
- Alt.js的入门
一.什么是Alt altJS是基于Flux使用Javascript应用来管理数据的类库,它简化了flux的store.actions.dispatcher. 关于Flux,以下链接都做了很好的诠释 h ...
- django构建blog--页面部分(eclipse+pydev)
本文介绍的是在eclipse+pydev 平台下,利用django 搭建blog的第2部分:页面部分(主要涉及3个部分:模板.视图.URL模式) 篇幅1:创建模板 blog目录下新建一个文件夹:tem ...