DFS + Memorized Search (DP)

class Solution {
int dfs(int i, int j, int row, int col,
vector<vector<int>>& A, vector<vector<int>>& dp)
{
if(dp[i][j] != ) return dp[i][j]; if (i > && A[i-][j] > A[i][j])
{
dp[i][j] = max(dp[i][j], dfs(i - , j, row, col, A, dp));
}
if (i < row - && A[i+][j] > A[i][j])
{
dp[i][j] = max(dp[i][j], dfs(i + , j, row, col, A, dp));
}
if (j > && A[i][j-] > A[i][j])
{
dp[i][j] = max(dp[i][j], dfs(i, j - , row, col, A, dp));
}
if (j < col - && A[i][j+] > A[i][j])
{
dp[i][j] = max(dp[i][j], dfs(i, j + , row, col, A, dp));
} return ++dp[i][j];
}
public:
/**
* @param A an integer matrix
* @return an integer
*/
int longestIncreasingContinuousSubsequenceII(vector<vector<int>>& A)
{
if (A.empty() || A[].empty()) return ; int ret = ;
int row = A.size();
int col = A[].size(); vector<vector<int>> dp(row, vector<int>(col)); for(int i = ; i < row; i ++)
for(int j = ; j < col; j ++)
{
ret = max(ret, dfs(i, j, row, col, A, dp));
} return ret;
}
};

LintCode "Longest Increasing Continuous subsequence II" !!的更多相关文章

  1. [LintCode] Longest Increasing Continuous subsequence

    http://www.lintcode.com/en/problem/longest-increasing-continuous-subsequence/# Give you an integer a ...

  2. [LintCode] Longest Increasing Continuous Subsequence 最长连续递增子序列

    Give an integer array,find the longest increasing continuous subsequence in this array. An increasin ...

  3. LintCode 397: Longest Increasing Continuous Subsequence

    LintCode 397: Longest Increasing Continuous Subsequence 题目描述 给定一个整数数组(下标从0到n - 1,n表示整个数组的规模),请找出该数组中 ...

  4. Lintcode397 Longest Increasing Continuous Subsequence solution 题解

    [题目描述] Give an integer array,find the longest increasing continuous subsequence in this array. An in ...

  5. Longest Increasing Common Subsequence (LICS)

    最长上升公共子序列(Longest Increasing Common Subsequence,LICS)也是经典DP问题,是LCS与LIS的混合. Problem 求数列 a[1..n], b[1. ...

  6. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  7. Longest Continuous Increasing Subsequence II

    Description Given an integer matrix. Find the longest increasing continuous subsequence in this matr ...

  8. leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence

    Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...

  9. 【Lintcode】076.Longest Increasing Subsequence

    题目: Given a sequence of integers, find the longest increasing subsequence (LIS). You code should ret ...

随机推荐

  1. session过期时ajax请求刷新浏览器

    ajax前置处理实现异步请求session过期时跳转登录页面 function checkLogin(json) { if (typeof(json) === 'string' && ...

  2. dubbo管理控制台安装和使用

    dubbo管理控制台安装和使用 标签: dubbo 2014-08-19 16:31 2436人阅读 评论(1) 收藏 举报  分类: dubbo(6)  版权声明:本文为博主原创文章,未经博主允许不 ...

  3. ion torrent ion proton

    https://www.youtube.com/watch?v=6Is3W7JkFp8 NGS 的视频 说的不错 一个做癌症的教授讲的 Ion Torrent™ next-generation seq ...

  4. 双系统安装要点 - imsoft.cnblogs

    1.用磁盘工具  取消当前激活分区,并隐藏当前激活分区2.按照普通的形式安装系统  Ghost安装和简单安装都可以3用修复启动项工具  修复之前处隐藏的系统启动项 OK,再就不会看到烦人的蓝屏了!

  5. ANTLR3完全参考指南读书笔记[01]

    引用 Terence Parr. The Definitive ANTLR Reference, Building Domain Specific Languages(antlr3 version). ...

  6. SAP 增强说明

    转自http://blog.csdn.net/lyb_yt/article/details/8177974 (一)什么是增强(Enhancement)? 简单地说,增强就是ERP系统中标准程序的出口, ...

  7. DB2中的ROW_NUMBER() OVER()函数用法

      ROW_NUMBER() OVER()大概有俩方面的作用 1,分页, 并返回分页结果集.2,是对数据进行处理 分组 db2的分页: select tmp.* from ( SELECT rownu ...

  8. c#实现高精度四舍五入

    /// <summary>        /// 實現數據的四捨五入        /// </summary>        /// <param name=" ...

  9. tyvj1013 - 找啊找啊找GF ——二维背包变种

    题目链接:https://www.tyvj.cn/Problem_Show.aspx?id=1013 好吧,这题没节操=_= 状态f[u,v,i]表示:消费u的人民币和v的人品同时泡到i个mm所需要的 ...

  10. Codeforces Round #130 (Div. 2)

    A. Dubstep 字符串模拟. string.find()用法 string str; size_t pos = str.find("WUB"); // 返回匹配的第一个位置 ...