Redis GEO ,GEOHASH,Spatial_index
https://matt.sh/redis-geo
http://antirez.com/latest/0
http://invece.org/
https://github.com/davidmoten/geo/blob/master/src/main/java/com/github/davidmoten/geo/GeoHash.java
http://www.movable-type.co.uk/scripts/latlong-db.html
http://www.basistech.com/wp-content/uploads/2014/06/oss-2011-smiley-geospatial-search.pdf
https://github.com/mattsta/geohash-int/commits/matt
https://dzone.com/articles/designing-spacial-index#footnote-6-ref
http://www.ibm.com/developerworks/library/j-spatial/
https://en.wikipedia.org/wiki/Angular_diameter
https://en.wikipedia.org/wiki/Angular_displacement
https://github.com/yinqiwen/ardb/blob/d42503/src/geo/geohash_helper.cpp
https://github.com/yinqiwen/ardb/wiki/Spatial-Index
https://github.com/yinqiwen/geohash-int
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Z-order_curve
https://en.wikipedia.org/wiki/Geohash
https://matt.sh/redis-architecture-diagram
https://matt.sh/redis-geo#_origin-story
https://github.com/antirez/redis/blob/356a6304ec77783e7fdaf00668a09dc293b810a0/src/geo.c
http://cristian.regolo.cc/2015/07/07/introducing-the-geo-api-in-redis.html
http://redisplanet.com/redis/under-the-hood-of-redis-hash-part-2-and-list/
http://redisplanet.com/redis/under-the-hood-of-redis-hash-part-1/
http://www.basistech.com/wp-content/uploads/2014/06/oss-2011-smiley-geospatial-search.pdf
https://dzone.com/articles/designing-spacial-index
http://iamzhongyong.iteye.com/blog/1399333
http://tech.idv2.com/2011/06/17/location-search/
http://blog.sina.com.cn/s/blog_62ba0fdd0100tul4.html
https://github.com/kungfoo/geohash-java
http://101.96.10.62/geomesa.github.io/assets/outreach/SpatioTemporalIndexing_IEEEcopyright.pdf
https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-shape.html
https://docs.mongodb.com/manual/core/geospatial-indexes/
https://en.wikipedia.org/wiki/Spatial_database#Spatial_index
https://en.wikipedia.org/wiki/Geographic_coordinate_system
https://en.wikipedia.org/wiki/Haversine_formula
http://geohash.org/site/tips.html
http://101.96.10.63/www.comp.nus.edu.sg/~ooibc/spatialsurvey.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.7080&rep=rep1&type=pdf
http://101.96.10.61/people.cs.vt.edu/~asandu/Public/Qual2005/Q2005_skjellum.pdf
http://gis.stackexchange.com/questions/108557/advantages-of-r-trees-in-comparison-to-geohashes?rq=1
http://www.movable-type.co.uk/scripts/latlong.html
https://en.wikipedia.org/wiki/Great-circle_distance
https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Angular_displacement
http://www.mathsisfun.com/algebra/trig-inverse-sin-cos-tan.html
http://math.rice.edu/~pcmi/sphere/drg_txt.html
http://stackoverflow.com/questions/18324524/what-are-some-efficient-geohash-bounding-box-coverage-algorithms
https://en.wikipedia.org/wiki/Image_resolution
======================================================================
Absolutely you can. And it can be quite fast. (EDIT: The intensive computation bits can ALSO be distributed)
There are several ways, but one way that I've been working with is in using an ordered list of integer-based geohashes, and finding all the nearest neighbour geohash ranges for a specific geohash resolution (the resolution approximates your distance
criteria), and then querying those geohash ranges to get a list of nearby points. I use redis and nodejs (ie. javascript) for this. Redis is super fast and can retrieve ordered ranges very quickly, but it can't do a lot of the indexing query manipulation stuff that SQL databases can do.
The method is outlined here: https://github.com/yinqiwen/ardb/blob/master/doc/spatial-index.md
But the gist of it is (to paraphrase the link):
- You store all your geohashed points in the best resolution you want (max usually 64bit integer if that's accessible, or in the case of javascript, 52bits) in an ordered set (ie. zset in redis). Most geohash libraries these days have geohash integer functions built in, and you'll need to use these instead of the more common base32 geohashes.
- Based on the radius you want to search within, you need to then find a bit depth/resolution that will match your search area and this must be less than or equal to your stored geohash bit depth. The linked site has a table that correlates the bit depth of a geohash to its bounding box area in meters.
- Then you rehash your original coordinate at this lower resolution.
- At that lower resolution also find the 8 neighbour (n, ne, e, se, s, sw, w, nw) geohash areas. The reason why you have to do the neighbour method, is because two coordinates nearly right beside each other could have completely different geohashes, so you need to do some averaging of the area covered by the search.
- Once you get all the neighbour geohashes at this lower resolution, add to the list your coordinate's geohash from step 3.
- Then you need to build a range of geohash values to search within which cover these 9 areas. The values from step 5 are your lower range limit, and if you add 1 to each of them, you'll get your upper range limit. So you should have an array of 9 ranges, each with a lower limit and and upper geohash limit (18 geohashes in total). These geohashes are still in that lower resolution from step 2.
- Then you convert all 18 of these geohashes to whatever bit depth/resolution you have stored all your geohashes in your database in. Generally you do this by bitshifting it to the desired bit depth.
- Now you can do a range query for points within these 9 ranges and you'll get all points approximately within the distance of your original point. There will be no overlap so you don't need to do any intersections, just pure range queries, very fast. (ie. in redis: ZRANGEBYSCORE zsetname lowerLimit upperLimit, over the 9 ranges produced in this step)
You can further optimize (speed wise) this by:
- Taking those 9 ranges from step 6 and finding where they lead into each other. Usually you can reduce 9 separate ranges into about 4 or 5 depending on where your coordinate is. This can reduce your query time by half.
- Once you have your final ranges, you should hold them for reuse. The calculation of these ranges can take most of the processing time, so if your original coordinate doesn't change much but you need to make the same distance query over again, you should keep that ready instead of calculating it everytime.
- If you're using redis, try to combine the queries into a MULTI/EXEC so it pipelines them for a bit better performance.
- The BEST part: You can distribute steps 2-7 on clients instead of having that computation done all in one place. This greatly reduces CPU load in situations where millions of requests would be coming in.
You can further improve accuracy by using a circle distance/haversine type function on the returned results if you care much about precision.
Here's a similar technique using ordinary base32 geohashes and a SQL query instead of redis: https://github.com/davetroy/geohash-js
I don't mean to plug my own thing, but I've written a module for nodejs&redis that makes this really easy to implement. Have a look at the code if you'd like: https://github.com/arjunmehta/node-geo-proximity
Redis GEO ,GEOHASH,Spatial_index的更多相关文章
- 洞悉Redis技术内幕:缓存,数据结构,并发,集群与算法
"为什么这个功能用不了?" 程序员:"清一下缓存" 上篇洞悉系列文章给大家详细介绍了MySQL的存储内幕:洞悉MySQL底层架构:游走在缓冲与磁盘之间.既然聊过 ...
- 常见的Redis面试"刁难"问题,值得一读
Redis有哪些数据结构? 字符串String.字典Hash.列表List.集合Set.有序集合SortedSet. 如果你是Redis中高级用户,还需要加上下面几种数据结构HyperLogLog.G ...
- Redis的Python实践,以及四中常用应用场景详解——学习董伟明老师的《Python Web开发实践》
首先,简单介绍:Redis是一个基于内存的键值对存储系统,常用作数据库.缓存和消息代理. 支持:字符串,字典,列表,集合,有序集合,位图(bitmaps),地理位置,HyperLogLog等多种数据结 ...
- 分布式缓存技术redis学习系列(五)——redis实战(redis与spring整合,分布式锁实现)
本文是redis学习系列的第五篇,点击下面链接可回看系列文章 <redis简介以及linux上的安装> <详细讲解redis数据结构(内存模型)以及常用命令> <redi ...
- 项目分布式部署那些事(1):ONS消息队列、基于Redis的Session共享,开源共享
因业务发展需要现在的系统不足以支撑现在的用户量,于是我们在一周之前着手项目的性能优化与分布式部署的相关动作. 概况 现在的系统是基于RabbitHub(一套开源的开发时框架)和Rabbit.WeiXi ...
- redis虚拟机模拟集群,节点,增加多端口命令
Redis启动多端口,运行多实例 使用redis在同一台机器上,启用多个端口,实现多个实例,完成集群的模拟实现. 启动多实例 redis默认启动端口为6379,我们可以使用 --port 来指定多个端 ...
- redis 五种数据结构详解(string,list,set,zset,hash)
redis 五种数据结构详解(string,list,set,zset,hash) Redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,zset,hash等数据结构的存 ...
- python_way ,day11 线程,怎么写一个多线程?,队列,生产者消费者模型,线程锁,缓存(memcache,redis)
python11 1.多线程原理 2.怎么写一个多线程? 3.队列 4.生产者消费者模型 5.线程锁 6.缓存 memcache redis 多线程原理 def f1(arg) print(arg) ...
- Redis入门(优势,环境,字符串,哈希,列表)
Redis从它的许多竞争继承来的三个主要特点: Redis数据库完全在内存中,使用磁盘仅用于持久性. 相比许多键值数据存储,Redis拥有一套较为丰富的数据类型. Redis可以将数据复制到任意数量的 ...
随机推荐
- (转)IOS之Info.plist文件简介
原文:IOS之Info.plist文件简介 http://www.apkbus.com/android-130240-1-1.html (出处: Android开发论坛 - 安卓开发论坛 - Andr ...
- Connection to http://www.google.com:80 refused
使用SDK Manager更新时出现问题 Failed to fetch URL https://dl-ssl.google.com/android/repository/repository-6.x ...
- JQuery源码分析(七)
了解jQuery对DOM进行遍历背后的工作机制,这样可以在编写代码时有意识地避免一些不必要的重复操作,从而提升代码的性能. 关于jQuery对象的包装 var $aaron = $("aar ...
- IPhone手机自动添加到itunes设置
一,项目设置 如图:点击项目--info 在key下面条目上右键点击,选择添加Application supports iTunes file sharing value设置为yes
- hdu1166敌兵布阵_线段树单点更新
Problem Description C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了.A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任 ...
- HDU 4135
http://acm.hdu.edu.cn/showproblem.php?pid=4135 求[A,B]内与N互素的数字个数 首先对N分解质因数,对于一个质因数,1-n与它不互素的数字个数是n/(这 ...
- NSIS安装制作基础教程[初级篇], 献给对NSIS有兴趣的初学者
NSIS安装制作基础教程[初级篇], 献给对NSIS有兴趣的初学者 作者: raindy 来源:http://bbs.hanzify.org/index.php?showtopic=30029 时间: ...
- VirtualizingStackPanel
<FlipView x:Name="flipView1" ItemsSource="{Binding}" ScrollViewer.HorizontalS ...
- 转:服务器控件的 ID,ClientID,UniqueID 的区别
动态加载用户控件的怪问题 动态加载用户控件的时候,会因为调用一些控件的一些属性和方法而造成控件命名混乱. 因为add 一个用户控件或者 loadcontrol 的时候 如果没有指定控件的id,clie ...
- (实用篇)php中计算中文字符串长度、截取中文字符串的函数代码
在PHP中,我们都知道有专门的mb_substr和mb_strlen函数,可以对中文进行截取和计算长度,但是,由于这些函数并非PHP的核心函数,所以,它们常常有可能没有开启.当然,如果是用的自己的服务 ...