Description

People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, others like using Windows, and some like difficult mathematical games. Latest marketing research shows, that this market segment was so far underestimated and that there is lack of such games. This kind of game was thus included into the KOKODáKH. The rules follow:

Each player chooses two numbers Ai and Bi and writes them on a slip of paper. Others cannot see the numbers. In a given moment all players show their numbers to the others. The goal is to determine the sum of all expressions AiBi from all players including oneself and determine the remainder after division by a given number M. The winner is the one who first determines the correct result. According to the players' experience it is possible to increase the difficulty by choosing higher numbers.

You should write a program that calculates the result and is able to find out who won the game.

Input

The input consists of Z assignments. The number of them is given by the single positive integer Z appearing on the first line of input. Then the assignements follow. Each assignement begins with line containing an integer M (1 <= M <= 45000). The sum will be divided by this number. Next line contains number of players H (1 <= H <= 45000). Next exactly H lines follow. On each line, there are exactly two numbers Ai and Bi separated by space. Both numbers cannot be equal zero at the same time.

Output

For each assingnement there is the only one line of output. On this line, there is a number, the result of expression

(A1B1+A2B2+ ... +AHBH)mod M.

Sample Input

3
16
4
2 3
3 4
4 5
5 6
36123
1
2374859 3029382
17
1
3 18132

Sample Output

2
13195
13

【题意】给出h组a,b的值,求a1^b1+a2^b2+...+an^bn之和mod p的值

【思路】快速幂二进制取模算法

参考资料:http://www.cnblogs.com/yan-boy/archive/2012/11/29/2795294.html

http://blog.csdn.net/zhangv123/article/details/47953221

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std; int fun(long long int a,long long int b,long long int p)
{
long long int res=;
while(b)
{
if(b&) res=res*a%p;
a=a*a%p;
b>>=;
}
return res;
}
int main()
{
long long int t;
long long int a,b,h,p;
scanf("%lld",&t);
while(t--)
{
long long int ans=;
scanf("%lld%lld",&p,&h);
for(int i=;i<=h;i++)
{
scanf("%lld%lld",&a,&b);
ans=ans+fun(a,b,p); }
ans=ans%p;
printf("%I64d\n",ans);
}
return ;
}

Raising Modulo Numbers_快速幂取模算法的更多相关文章

  1. 【转】C语言快速幂取模算法小结

    (转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...

  2. POJ1995:Raising Modulo Numbers(快速幂取余)

    题目:http://poj.org/problem?id=1995 题目解析:求(A1B1+A2B2+ ... +AHBH)mod M. 大水题. #include <iostream> ...

  3. Powmod快速幂取模

    快速幂取模算法详解 1.大数模幂运算的缺陷: 快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算 ...

  4. 《Java语言实现快速幂取模》

    快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算过程中最麻烦的就是我们的5^1003这个过程 ...

  5. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  6. HDU--杭电--4506--小明系列故事——师兄帮帮忙--快速幂取模

    小明系列故事——师兄帮帮忙 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) To ...

  7. 二分求幂/快速幂取模运算——root(N,k)

    二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...

  8. 快速幂取模(POJ 1995)

    http://poj.org/problem?id=1995 以这道题来分析一下快速幂取模 a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 利用公式a*b%c ...

  9. POJ 3233-Matrix Power Series( S = A + A^2 + A^3 + … + A^k 矩阵快速幂取模)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 20309   Accepted:  ...

随机推荐

  1. Thread 总结

    进程:是一个正在执行的程序 每一个进程执行都有一个执行顺序.该顺序是一个执行路劲,后者叫一个控制单元. 线程:就是进程中的一个独立控制单元. 线程在控制着进程的执行 一个进程中至少有个一个线程 Jav ...

  2. IntelliJ IDEA 中properties中文显示问题

  3. css改变图片的颜色

    参考大神张鑫旭:http://www.zhangxinxu.com/wordpress/2016/06/png-icon-change-color-by-css/ 主要知识点:border-right ...

  4. TextBoxButton控件的开发实现

    效果图: 实现代码: public TextBoxButton() { _button = new Button { ForeColor = System.Drawing.SystemColors.G ...

  5. S1 :闭包

    闭包是指有权访问另一个函数作用域中的变量的函数.创建闭包的常见方式,就是在一个函数内部创建另一个函数,以createComparisonFunction()函数为例 function createCo ...

  6. bzoj 2324: [ZJOI2011]营救皮卡丘

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #inclu ...

  7. Ibatis.Net 数据库操作(四)

    一.查询select 还记得第一篇示例中的是如何读出数据库里的3条数据吗? 就是调用了一个QueryForList方法,从方法名就知道,查询返回列表. 1.QueryForList 返回List< ...

  8. javascript作用域(Scope),简述上下文(context)和作用域的定义

    网页制作Webjx文章简介:这篇文章将正面解决这个问题:简述上下文(context)和作用域的定义,分析可以让我们掌控上下文的两种方法,最后深入一种高效的方案,它能有效解决我所碰到的90%的问题. 作 ...

  9. Oracle中varchar,varchar2,nvarchar,nvarchar2的区别

    --varchar,varchar2 联系:1.varchar/varchar2用于存储可变长度的字符串比如varchar(20),存入字符串'abc',则数据库中该字段只占3个字节,而不是20个字节 ...

  10. 推荐一款好用轻便的在线UML画图工具

    刚接触UML时间不长,看了N多教学视频,下载好了几个软件各种不习惯 当我遇见了ProcessOn  从此我彻底“爱上”了它! http://www.processon.com/ UML各类例图它几乎全 ...