//Hanoi(汉诺)塔问题。这是一个古典的数学问题,用递归方法求解。问题如下:
/*
古代有一个梵塔,塔内有3个座A,B,C,开始时A座上有64个盘子,盘子大小不等,大的在下,小的在上。
有一个老和尚想把这64个盘子从A座移动到C座,但规定每次只允许移动一个盘,且在移动过程中在3个座上
都始终保持大盘在下,小盘在上。在移动过程中可以利用B座。要求编程序输出移动盘子的步骤。
*/
#include<stdio.h>
#include<stdlib.h>
int main()
{
//对hanoi函数的声明
void hanoi(int n,char one,char two,char three);
int m;
printf("input the number of diskes:");
scanf("%d",&m);
printf("The step to move %d diskes:\n",m);
hanoi(m,'A','B','C');
system("pause");
return ;
}
//定义hanoi函数
void hanoi(int n,char one ,char two,char three)
{//将n个盘从one座借助two座,移到three座
void move(char x,char y); //对move函数的声明
if(n==)
move(one,three);
else
{
hanoi(n-,one,three,two);
move(one,three);
hanoi(n-,two,one,three);
}
}
void move(char x,char y)
{
printf("%c->%c\n",x,y);
}

《hanoi(汉诺塔)问题》求解的更多相关文章

  1. Hanoi II——汉诺塔步数求解进阶问题

    在NOJ上遇到关于汉诺塔步数的求解问题 开始读时一脸懵逼,甚至不知道输入的数据是什么意思 题目描述:给出汉诺塔的两个状态,从初始状态移动到目的状态所需要的最少步数 对于初级汉诺塔步数问题,我们可以直接 ...

  2. [CareerCup] 3.4 Towers of Hanoi 汉诺塔

    3.4 In the classic problem of the Towers of Hanoi, you have 3 towers and N disks of different sizes ...

  3. 理解 Hanoi 汉诺塔非递归算法

    汉诺塔介绍: 汉诺塔(港台:河内塔)是根据一个传说形成的数学问题: 最早发明这个问题的人是法国数学家爱德华·卢卡斯. 传说越南河内某间寺院有三根银棒,上串 64 个金盘.寺院里的僧侣依照一个古老的预言 ...

  4. 使用函数的递归调用来解决Hanoi(汉诺)塔问题。

    #include<stdio.h> void hanoi(int n, char x, char y, char z); void move(char x, char y); int ti ...

  5. Hanoi汉诺塔问题——递归与函数自调用算法

    题目描述 Description 有N个圆盘,依半径大小(半径都不同),自下而上套在A柱上,每次只允许移动最上面一个盘子到另外的柱子上去(除A柱外,还有B柱和C柱,开始时这两个柱子上无盘子),但绝不允 ...

  6. hanoi(汉诺塔)递归实现

    汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序 ...

  7. Java求解汉诺塔问题

    汉诺塔问题的描述如下:有3根柱子A.B和C,在A上从上往下按照从小到大的顺序放着一些圆盘,以B为中介,把盘子全部移动到C上.移动过程中,要求任意盘子的下面要么没有盘子,要么只能有比它大的盘子.编程实现 ...

  8. 汉诺塔-Hanoi

    1. 问题来源: 汉诺塔(河内塔)问题是印度的一个古老的传说. 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵 ...

  9. 汉诺塔 Hanoi Tower

    电影<猩球崛起>刚开始的时候,年轻的Caesar在玩一种很有意思的游戏,就是汉诺塔...... 汉诺塔源自一个古老的印度传说:在世界的中心贝拿勒斯的圣庙里,一块黄铜板上插着三支宝石针.印度 ...

随机推荐

  1. git代码提交方式

    https://my.oschina.net/tearlight/blog/193921 <a>github的提交方式      (1)git add .----------------- ...

  2. 显示win7桌面网络.reg

    显示win7桌面网络.reg Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\C ...

  3. robot.libdocpkg package

    mplements the Libdoc tool. The command line entry point and programmatic interface for Libdoc are pr ...

  4. python3.x随手笔记1

    语法分析 Python程序读取的 解析器 . 解析器的输入流 令牌 ,生成的 词法分析程序 . 这一章描述了如何 词法分析程序把一个文件分解成令牌. Python读取程序文本作为Unicode代码点; ...

  5. HTML5自学笔记[ 15 ]canvas绘图基础6

    关于线条的一些属性: lineCap,这个属性表示的是线条两端的样式,值有butt(默认)/round/square. lineJoin,这个属性表示线条相交的方式,值有miter(默认)/bevel ...

  6. HTML5自学笔记[ 4 ]js中新增的选择器方法

    querySelector():参数与jQuery一样,这个方法获取一组元素中的第一个元素. querySelectorAll():获取一组元素. getElementsByClassName():获 ...

  7. C# System.Diagnostics.Stopwatch 类

    测量一个时间间隔的运行时间 a.调用 Start 方法 b.调用 Stop 方法 c.使用 Elapsed 属性检查运行时间. 如: System.Diagnostics.Stopwatch stop ...

  8. Hibernate4+Spring JPA+SpringMVC+Volecity搭建web应用(二)

    SpringMVC.xml配置 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=&qu ...

  9. 如何查看,关闭和开启selinux

    以下介绍一下SELinux相关的工具/usr/bin/setenforce 修改SELinux的实时运行模式setenforce 1 设置SELinux 成为enforcing模式setenforce ...

  10. centos chkconfig 服务设置

    chkconfig命令主要用来更新(启动或停止)和查询系统服务的运行级信息.谨记chkconfig不是立即自动禁止或激活一个服务,它只是简单的改变了符号连接. 使用语法:chkconfig [--ad ...