题目描述

Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家。现在,他正在为一个细胞实

验做准备工作:培养细胞样本。

Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个第 i 种细胞经过 1 秒钟可以分裂为

Si个同种细胞(Si为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,

进行培养。一段时间以后,再把培养皿中的所有细胞平均分入 M 个试管,形成 M 份样本,

用于实验。Hanks 博士的试管数 M 很大,普通的计算机的基本数据类型无法存储这样大的

M 值,但万幸的是,M 总可以表示为 m1的 m2次方,即

M = m1^m2

,其中 m1,m2均为基本

数据类型可以存储的正整数。

注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有 4 个细胞,

Hanks 博士可以把它们分入 2 个试管,每试管内 2 个,然后开始实验。但如果培养皿中有 5

个细胞,博士就无法将它们均分入 2 个试管。此时,博士就只能等待一段时间,让细胞们继

续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。

为了能让实验尽早开始,Hanks 博士在选定一种细胞开始培养后,总是在得到的细胞“刚

好可以平均分入 M 个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细

胞培养,可以使得实验的开始时间最早。

输入输出格式

输入格式:

第一行有一个正整数 N,代表细胞种数。

第二行有两个正整数 m1,m2,以一个空格隔开,

即表示试管的总数 M = m1^m2。

第三行有 N 个正整数,第 i 个数 Si表示第 i 种细胞经过 1 秒钟可以分裂成同种细胞的个

数。

输出格式:

输出文件 cell.out 共一行,为一个整数,表示从开始培养细胞到实验能够开始所经过的

最少时间(单位为秒)。

如果无论 Hanks 博士选择哪种细胞都不能满足要求,则输出整数-1。

输入输出样例

输入样例#1:

1
2 1
3
输出样例#1:

-1
输入样例#2:

2
24 1
30 12
输出样例#2:

2

说明

【输入输出说明】

经过 1 秒钟,细胞分裂成 3 个,经过 2 秒钟,细胞分裂成 9 个,……,可以看出无论怎么分

裂,细胞的个数都是奇数,因此永远不能分入 2 个试管。

【输入输出样例2 说明】

第 1 种细胞最早在3 秒后才能均分入24 个试管,而第2 种最早在2 秒后就可以均分(每

试管144/(241)=6 个)。故实验最早可以在2 秒后开始。

【数据范围】

对于 50%的数据,有m1^m2 ≤ 30000。

对于所有的数据,有1 ≤N≤ 10000,1 ≤m1 ≤ 30000,1 ≤m2 ≤ 10000,1 ≤ Si ≤ 2,000,000,000。

NOIP 2009 普及组 第三题

怎么说呢,一看到题目就想到了正解,然后开始拆分,理由不再赘述。

然而刚开始的时候TLE了,其实没必要把每一个都拆开,只需要判断就可以了

#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#define INF 2000100
using namespace std;
int a[];
struct node{
int num;
int sum;
};
node p1[];
node p2[];
int ans=INF;
int gcd (int a,int b)
{
return b==?a:gcd(b,a%b);
}
int main()
{
int n,m1,m2;
scanf("%d%d%d",&n,&m1,&m2);
if (m1==){
cout<<""<<endl;
return ;
}
for (int i=;i<=n;++i) scanf("%d",&a[i]);
int t=,t1=;
while (m1>){
t++;
if (m1%t==){
t1++;
p1[t1].num=t;
p1[t1].sum=;
}
int flag=;
while (m1%t==){
flag=;
m1/=t;
p1[t1].sum++;
}
if (flag) p1[t1].sum*=m2;
}
/* for (int i=1;i<=n;++i){
int t=1,t2=0;
while (a[i]>1){
t++;
if (a[i]%t==0){
t2++;
p2[t2].num=t;
p2[t2].sum=0;
}
int flag=0;
while (a[i]%t==0){
flag=1;
a[i]/=t;
p2[t2].sum++;
}
}
int x=1,y=1;
int now=-1;
do{
while (x<=t1){
while (p2[y].num!=p1[x].num&&y<=t2) y++;
if (y>t2) {now=INF;break;}
now=max(now,p1[x].sum%p2[y].sum==0?p1[x].sum/p2[y].sum:p1[x].sum/p2[y].sum+1);
x++;
}
break;
}while(1);
ans=min(ans,now);
}*/
for (int i=;i<=n;++i){
int flag=;
int now=-;
for (int j=;j<=t1;++j){
if (a[i]%p1[j].num!=){
flag=; break;
}
else {
int t=;
while(a[i]%p1[j].num==){
a[i]/=p1[j].num;
t++;
}
now=max(now,p1[j].sum%t==?p1[j].sum/t:p1[j].sum/t+);
}
}
if (flag) ans=min(ans,now);
}
if (ans==INF) cout<<"-1"<<endl;
else cout<<ans<<endl;
}

注释部分就是自己思想的挣扎

#include <NOIP2009 Junior> 细胞分裂 ——using namespace wxl;的更多相关文章

  1. #include &lt;NOIP2009 Junior&gt; 细胞分裂 ——using namespace wxl;

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细胞实 验做准备工作:培养细胞样本. Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个 ...

  2. #include <NOIP2010 Junior> 三国游戏 ——using namespace wxl;

    题目描述 小涵很喜欢电脑游戏,这些天他正在玩一个叫做<三国>的游戏. 在游戏中,小涵和计算机各执一方,组建各自的军队进行对战.游戏中共有 N 位武将(N为偶数且不小于 4),任意两个武将之 ...

  3. #include <NOIP2008 Junior> 双栈排序 ——using namespace wxl;

    题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...

  4. #include &lt;NOIP2008 Junior&gt; 双栈排序 ——using namespace wxl;

    题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...

  5. cogs 466. [NOIP2009] 细胞分裂

    466. [NOIP2009] 细胞分裂 ★★   输入文件:cell.in   输出文件:cell.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述]    Hanks ...

  6. 洛谷 P1069 细胞分裂 解题报告

    P1069 细胞分裂 题目描述 \(Hanks\)博士是\(BT\) (\(Bio-Tech\),生物技术) 领域的知名专家.现在,他正在为一个细胞实验做准备工作:培养细胞样本. \(Hanks\) ...

  7. P1069 细胞分裂

    P1069 细胞分裂 考虑质因数分解 先将m1,质因数分解后再根据数学定理将所有质数的质数全乘m2 然后将输入的数据相同处理,再判断 顺便说一下判断规矩 1肯定不行 如果分解后有没有m1质因数分解中的 ...

  8. luogu P1069 细胞分裂

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细胞实 验做准备工作:培养细胞样本. Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个 ...

  9. 细胞分裂(洛谷 P1069)

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细胞实 验做准备工作:培养细胞样本. Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个 ...

随机推荐

  1. [转载]Ubuntu14.04 LTS更新源

    不同的网络状况连接以下源的速度不同, 建议在添加前手动验证以下源的连接速度(ping下就行),选择最快的源可以节省大批下载时间. 首先备份源列表: sudo cp /etc/apt/sources.l ...

  2. springMVC图片文件上传功能的实现

    在工程依赖库下添加文件上传jar包 commons-fileupload-1.2.2.jar commons-io-2.4.jar 2.jsp页面设置form表单属性enctype 在表单中上传图片时 ...

  3. 简洁侧边wordpress博客模板

    模板描述:商务领航,尽现成熟稳重的个人小站风格     响应式Web设计,自适应电脑.平板电脑.移动设备     图标字体库,自适应各种终端设备,保证图形图标清晰无锯齿,支持Retina(视网膜屏幕) ...

  4. RHEL7软件包管理

    本文介绍RHEL7的软件包管理 RHEL7下主要有RPM和YUM这两种包管理: YUM使用简单但需要联网,YUM会去网上的YUM包源去获取所需要的软件包并获取该包依赖的其他包 RPM的需要的操作精度比 ...

  5. margin:0 auto;不能居中的原因

    原因: 1.没有设置本身元素和父元素的宽度 2.本身元素使用了绝对定位和浮动 2.没声明DOCTYPE

  6. c++类的定义《一》

    最近好忙,一来要在店里看店,二来朋友办结婚酒,搞的我这几天好疲惫啊···博客又有好几天没提笔了. 下午简单看了下书,看到了类的部分,自己动手练习了一下 笔记:1.类是数据类型 / 它的变童就是对象  ...

  7. 发布的时候Archive灰色

    主要是因为发布的时候要选为将模拟器选择一下,选为Generic iOS Device. 来自为知笔记(Wiz)

  8. 【读书笔记】iOS-KVC

    一,KVC即键/值编码. 二,KVC的基本调用包括-valueForKey:和-setValue:forKey:. 三,对于KVC,Cocoa自动放入和取出标量值.也就是说,当使用setValueFo ...

  9. Spring中配置数据源的4种形式(转)

    原文http://blog.csdn.net/orclight/article/details/8616103       不管采用何种持久化技术,都需要定义数据源.Spring中提供了4种不同形式的 ...

  10. oc 字符串

    #import <Foundation/Foundation.h> int main(int argc, const char * argv[]) { @autoreleasepool { ...