题目取自:《数据结构与算法分析:C语言描述_原书第二版》——Mark Allen Weiss      

练习1.5(a)  证明下列公式: logX < X 对所有 X > 0 成立。(注意:计算机科学中,若无特别说明,所有对数都是以2为底的)

  这个小题,看似简单。乍一看一高中证明题而已嘛。实则不然,我根据高中时常用的思路解了一下:

      设 f(X) = X - logX,其中X>0。

      易知 f(0) = 0 + ∞ > 0,f(X)′ = 1 - 1/(Xln2),令f(X)′ = 0,解得X = 1/ln2。

      于是当 0< X < 1/ln2时,f(X)′ < 0,函数单调递减。

        X > 1/ln2时,f(x)' > 0,函数单调递增。

所以f(1/ln2)为函数的极小值点。到这里我们只需要求出 f(1/ln2) = 1/ln2 - log(1/ln2) > 0 问题就得证了。结果的确大于零,不过计算结果只得求助于计算器(对减数进行放大也行不通)。对于求助于计算器的问题多少让人感觉不爽。到这里才想到,高中应该做的是lnX < X,问题一下就得到了可靠的答案(这里可靠的意思:不用借助计算器)。

我带着这个多少让人不爽的问题到网上搜了一圈,也没有多大的收获,很多还是错误的。不得已网搜了一下题解,发现本书竟然有作者提供的答案,于是果断搬了过来:)

不多说了,赶紧随我来膜拜一下Weiss吧:

证明采用数学归纳法。

  0 < X ≤ 1 时,logX < X 显然成立。因为X = 1时,log1 = 0 < 1。X < 1时,logX为负数,明显小于X。

  同样显然的情况是1 < X ≤ 2 时。因为log2 = 1 < 2,且X < 2 时logX < 1。

准备好了,最精彩的部分来了:

  归纳基础:1< X ≤ 2 时命题成立,由上可知。

  归纳假设:假设命题对任意正整数p(p≥1),p < X ≤ 2p 时命题成立,求证对于任意的正整数p,2p < Y < 4p命题成立。

  证明:logY = log(2·Y/2) = log2 + log(Y/2) < 1 + Y/2 < (Y/2 + Y/2 = Y)。

     即logY < Y成立。

  数学归纳法的步骤是完美的,因此命题logX < X,X > 0成立。

PS:由于答案是英文的,这里对语序做了下调整,且对不易理解的部分做了补充。

证明 logX < X 对所有 X > 0 成立的更多相关文章

  1. [转]logX<X对所有的X>0成立

    本文引用地址:http://blog.sciencenet.cn/blog-1865911-831450.html 此文来自科学网何召卫博客,转载请注明出处. 这个命题网上有多种证法,有人甚至采用斜率 ...

  2. [总结]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...

  3. 证明最大公约数Stein算法(高精度算法)

    E:even 奇数  O:odd 偶数 若(a,b)为(e,e),则gcd(a,b)=2*gcd(a/2,b/2) 若(a,b)为(e,o),则gcd(a,b)=gcd(a/2,b) 若(a,b)为( ...

  4. Codeforces Round #801 (Div. 2) C(规律证明)

    Codeforces Round #801 (Div. 2) C(规律证明) 题目链接: 传送门QAQ 题意: 给定一个\(n * m\)的矩阵,矩阵的每个单元的值为1或-1,问从\((1,1)\)开 ...

  5. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  6. localhost简介、localhost与 127.0.0.1 及 本机IP 的区别

    localhost是什么意思? 相信有人会说是本地ip,曾有人说,用127.0.0.1比localhost好,可以减少一次解析. 看来这个入门问题还有人不清楚,其实这两者是有区别的. localhos ...

  7. 判断一个正整数是否是2的N次方的简洁算法及其证明

    在写代码时遇到了“判断一个正整数是否是2的N次方”的问题,不想调用 java.lang 的 Math 类库进行浮点运算,觉得转换为浮点不是个好办法. 遂在网上搜索了一下,发现有人列出来好几种写法,列举 ...

  8. localhost 和 127.0.0.1

    转自:http://ordinarysky.cn/?p=431localhost与127.0.0.1的区别是什么?相信有人会说是本地ip,曾有人说,用127.0.0.1比localhost好,可以减少 ...

  9. localhost与127.0.0.1的区别 2

    localhost与127.0.0.1的区别localhost与127.0.0.1的区别是什么?相信有人会说是本地ip,曾有人说,用127.0.0.1比localhost好,可以减少一次解析.看来这个 ...

随机推荐

  1. osal_start_timerEx(Lock_TaskID,SBP_START_DEVICE_EVT,SBP_PERIODIC_EVT_PERIOD)的理解

    osal_start_timerEx(Lock_TaskID,SBP_START_DEVICE_EVT,SBP_PERIODIC_EVT_PERIOD)与osal_set_event(Music_Ta ...

  2. DataSet key points

    In a typical multiple-tier implementation, the steps for creating and refreshing a DataSet, and in t ...

  3. Oracle 常见问题

    查看Oracle数据库是否安装成功 sqlplus /nolog SQL>conn / as sysdba Connected to an Idle instance(表明成功) SQL> ...

  4. memcached学习笔记4--memcache扩展操作memcached

    1. 安装并配置memcache扩展库 找到php.ini文件 添加: extendsion= php_memcache.dll 并把对应的dll文件拷贝到ext目录 2. 使用PHP对Memcahc ...

  5. razor 添加html5属性

    在 HTML5 中, 可以使用 data- 属性来表示用户数据,这些数据甚至可以是 JSON 格式的数据,对 Web 前端开发带来很大的方便. 在 MVC 的 Razor 中,可以使用匿名对象来生成定 ...

  6. IN()

    High Performance My SQL, Third Edition Consider the followingWHERE clause: WHERE eye_color IN('brown ...

  7. 迷宫bfs POJ3984

    #include<stdio.h> int map[5][5]={0,1,0,0,0,       0,1,0,1,0,       0,0,0,0,0,       0,1,1,1,0, ...

  8. nginx proxy_pass

    在nginx中配置proxy_pass时,如果是按照^~匹配路径时,要注意proxy_pass后的url最后的/,当加上了/,相当于是绝对根路径,则nginx不会把location中匹配的路径部分代理 ...

  9. FTS抓包看蓝牙验证的过程

    1.概述    在进行蓝牙设备的连接时,为了保护个人隐私和数据保密的需要,需要进行验证.   2.一些Frame Frame74:本地发送Authentication requset command ...

  10. 如何获取并分析L2CAP包

    本文中的分析与软件相关的内容,都是以WinCE中的 Microsoft Bluetooth Core Stack为例进行分析:与协议有关的内容,是基于Bluetooth Core 2.1 + EDR ...