机器学习技法--学习笔记04--Soft SVM
背景
之前所讨论的SVM都是非常严格的hard版本,必须要求每个点都被正确的区分开。但是,实际情况时很少出现这种情况的,因为噪声数据时无法避免的。所以,需要在hard SVM上添加容错机制,使得可以容忍少量噪声数据。
"软"化问题
软化SVM的思路有点类似正规化,在目标函数添加错误累加项,然后加一个系数,控制对错误的容忍度,并且在约束中添加错误容忍度的约束,形式如下:
现在问题就变成了(d+1+N)个变量和2N个约束。ξ用来描述错误的容忍度。C是常量,用来控制容忍度。C越大,由于min的作用,ξ错误就会变小,也就是对错误的容忍度变小,约束变苛刻,边界变窄;反之,容忍度越大,约束变宽松,边界变宽。
遇到老熟人
现在,将上面软化后的SVM问题进行对偶转化和简化,得到的结果和之前hard版本十分类似,好像遇到了老熟人。
区别部分用红色高亮了,你会发现只多了N个约束。
α的妙用
α仍然可以使用QP方法计算得到,b的求解也是通过complementary slackness,但是在求解b的过程,可以将向量分为三类,很有参考意义,可用于数据分析。
首先看看complementary slackness条件,
当时,向量在边界上或远离边界;
当时,,向量在边界上,称之为free支持向量;
当时,向量在边界上()或者破坏约束()。
具体可以参考下图,
SVM实战
之前4篇学习笔记,公式理论推导了一大串,感觉有点飘,那么接下来就实战SVM,这样才踏实。使用的libsvm,但是在R中调用,需要'e1071'扩展(install.package('e1071'))。试验数据见这里。直接来代码:
library(e1071) load('data/train.RData') train$digit <- sapply(old_train_digit, function(digit) ifelse(digit == '0','0','non-0') ) train$digit <- factor(train$digit)
m_svm <- svm(digit~., data = train, scale = FALSE, kernel = 'radial', cost = 1, gamma = 100) summary(m_svm) attributes(m_svm) |
上面使用了RBF kernel,取C = 1。得到的结果中,有个属性是coefs,之前对这个属性很不了解,但是查看帮助,原文"The corresponding coefficients times the training labels",发现原来就是下面的值,
所以,如果使用线性kernel(也就是不用kernel),可以根据w的公式(如下)很方便的计算出w,
如果想实践QP,推荐使用R扩展包kernlab中的ipop函数。
最后,要感谢台湾大学林轩田老师设计出这么好的课程和作业,加深了我对SVM的理解,希望后面可以灵活的应用到实际工作中!
机器学习技法--学习笔记04--Soft SVM的更多相关文章
- 机器学习基石--学习笔记01--linear hard SVM
背景 支持向量机(SVM)背后的数学知识比较复杂,之前尝试过在网上搜索一些资料自学,但是效果不佳.所以,在我的数据挖掘工具箱中,一直不会使用SVM这个利器.最近,台大林轩田老师在Coursera上的机 ...
- Coursera台大机器学习技法课程笔记01-linear hard SVM
极其淡腾的一学期终于过去了,暑假打算学下台大的这门机器学习技法. 第一课是对SVM的介绍,虽然之前也学过,但听了一次感觉还是很有收获的.这位博主总结了个大概,具体细节还是 要听课:http://www ...
- 机器学习技法--学习笔记03--Kernel技巧
背景 上一讲从对偶问题的角度描述了SVM问题,但是始终需要计算原始数据feature转换后的数据.这一讲,通过一个kernel(核函数)技巧,可以省去feature转换计算,但是仍然可以利用featu ...
- 机器学习基石--学习笔记02--Hard Dual SVM
背景 上一篇文章总结了linear hard SVM,解法很直观,直接从SVM的定义出发,经过等价变换,转成QP问题求解.这一讲,从另一个角度描述hard SVM的解法,不那么直观,但是可以避免fea ...
- 机器学习实战(Machine Learning in Action)学习笔记————04.朴素贝叶斯分类(bayes)
机器学习实战(Machine Learning in Action)学习笔记————04.朴素贝叶斯分类(bayes) 关键字:朴素贝叶斯.python.源码解析作者:米仓山下时间:2018-10-2 ...
- TensorFlow机器学习框架-学习笔记-001
# TensorFlow机器学习框架-学习笔记-001 ### 测试TensorFlow环境是否安装完成-----------------------------```import tensorflo ...
- SaToken学习笔记-04
SaToken学习笔记-04 如果有问题,请点击:传送门 角色认证 在sa-token中,角色和权限可以独立验证 // 当前账号是否含有指定角色标识, 返回true或false StpUtil.has ...
- Redis:学习笔记-04
Redis:学习笔记-04 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 10. Redis主从复制 1 ...
- Python scikit-learn机器学习工具包学习笔记
feature_selection模块 Univariate feature selection:单变量的特征选择 单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标 ...
随机推荐
- 【转】让Chrome化身成为摸鱼神器,利用Chorme运行布卡漫画以及其他安卓APK应用教程
下周就是十一了,无论是学生党还是工作党,大家的大概都会有点心不在焉,为了让大家更好的心不在焉,更好的在十一前最后一周愉快的摸鱼,今天就写一个如何让Chrome(google浏览器)运行安卓APK应用的 ...
- sublim text3 配置
喜欢用sublime,但每次换环境都要重新百度下配置,太麻烦,故在此把自己喜欢的配置记录下来 sublime text2 可以直接在设置里改,但sublime text3不能直接在设置中改值,只能在s ...
- XproerIM产品使用手册
1. 产品介绍 版权所有:(c)2009-2016 荆门泽优软件有限公司 保留所有权利. 产品官网:http://www.ncmem.com/apps/xproerim/index.asp 安装 ...
- [Leetcode][JAVA] Populating Next Right Pointers in Each Node II
Follow up for problem "Populating Next Right Pointers in Each Node". What if the given tre ...
- halcon的算子列表
Chapter 1 :Classification 1.1 Gaussian-Mixture-Models 1.add_sample_class_gmm 功能:把一个训练样本添加到一个高斯混合模型的训 ...
- MySQL prepare 原理
Prepare的好处 Prepare SQL产生的原因.首先从mysql服务器执行sql的过程开始讲起,SQL执行过程包括以下阶段 词法分析->语法分析->语义分析->执行计划优化 ...
- Linux:Linux 重要人物
1.Ken Thompson:C 语言之父和 UNIX 之父 2.Dennis Ritchie:C 语言之父和 UNIX 之父 3.Stallman:著名黑客,GNU 创始人,开发了 Emacs.gc ...
- Lingo 做线性规划 - Game Thoery
Reference: <An Introduction to Management Science Quantitative Approaches to Decision Making, Rev ...
- servlet servlet基本概念和helloservlet实例
java web目录结构: web.xml是重要配置文件,容器正是通过这个文件找到service方法. 用纯文本+tomcat组装简单servlet web 新建HelloServlet.java: ...
- Js中的一个日期处理格式化函数
由于在工作中,经常需要对日期进行格式化,不像后端那样,有方便的方法可调用,可以在date的对象prototype中定义一个format方法,见如下 //日期时间原型增加格式化方法 Date.proto ...