Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u

Submit Status

Description

Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know \max GCD(F(i),F(j)) (L\leq i<j\leq R)
 

Input

There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries. 
In the next T lines, each line contains L, R which is mentioned above.

All input items are integers. 
1<= T <= 1000000 
2<=L < R<=1000000 

 

Output

For each query,output the answer in a single line. 
See the sample for more details. 
 

Sample Input

2
2 3
3 5
 

Sample Output

1
1
 

Source

2015 Multi-University Training Contest 3
题意:如题,x是一个正整数,f(x)表示x的素因子种类数, F(2)=1. F(10)=2,因为10=2*5. F(12)=2, 因为12=2*2*3。现在给定两个数l和r,问在l和r这个区间内任取两个数i,j中gcd(f(i),f(j))的最大值。给定t组数据,每组给定l和r,输出结果。
题解:先用素筛法打表筛选出每个数的素因子种类数,我们发现2*3*5*7*11*13*17=510510,注意虽然这个数小于10的6次方,但是已经足够证明7已经是最大值了,因为这7个素数是素数中最小的7个。f(i)只考虑i的素因子种类个数,不考虑这个素因子是否和j的素因子是同一个。举个例子,比如i=2*3*5*7*11*13*17=510510,种类数为7,j=2*3*5*7*11*13*19=570570,种类数也为7,所以如果lr区间中包含ij那么输出7。事实上,510510和570570是最小的两个包含7种素因子的数。说到这里就可以写了,涉及到一点递推的知识,用sum[maxn][8]存储,sum[i][j]表示对于数i来说,2到i中所有数的素因子种类数为j的数的个数。i从7遍历到1,如果sum[r][i]-sum[l-1][i]>=2,说明该区间内存在至少两个数的素因子种类数为i,break输出即可,因为我们要的是最大值。注意初始的时候要把ans定义为1,因为可能所有数的素因子种类数都不相等比如6,7这组数据,f(6)=2,f(7)=1,gcd(2,1)=1。输出1而不是0,虽然输出0也是能AC的但是不符合题意。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=1e6+;
int num[maxn];
int sum[maxn][];
void getnum()
{
memset(num,,sizeof(num));
memset(sum,,sizeof(sum));
for(int i=;i<maxn;i++)
{
if(!num[i])
{
for(int j=i;j<maxn;j+=i)
num[j]++;
}
}
for(int i=;i<maxn;i++)
for(int x=;x<=;x++)
{
sum[i][x]=sum[i-][x];
if(num[i]==x)
sum[i][x]++;
}
}
int main()
{
getnum();
int t;
scanf("%d",&t);
while(t--)
{
int l,r,ans=;
scanf("%d%d",&l,&r);
for(int i=;i>=;i--)
{
if(sum[r][i]-sum[l-][i]>=)
{
ans=i;
break;
}
}
printf("%d\n",ans);
}
return ;
}

HDU 5317 RGCDQ (数论素筛)的更多相关文章

  1. hdu 5317 RGCDQ(前缀和)

    题目链接:hdu 5317 这题看数据量就知道需要先预处理,然后对每个询问都需要在 O(logn) 以下的复杂度求出,由数学规律可以推出 1 <= F(x) <= 7,所以对每组(L, R ...

  2. ACM学习历程—HDU 5317 RGCDQ (数论)

    Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...

  3. HDU 5317 RGCDQ(素数个数 多校2015啊)

    题目链接:pid=5317" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=5317 Prob ...

  4. hdu 5317 RGCDQ (2015多校第三场第2题)素数打表+前缀和相减求后缀(DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5317 题意:F(x) 表示x的不同质因子的个数结果是求L,R区间中最大的gcd( F(i) , F(j ...

  5. 2015 Multi-University Training Contest 3 hdu 5317 RGCDQ

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  6. HDU 5317 RGCDQ

    题意:f(i)表示i的质因子个数,给l和r,问在这一区间内f(i)之间任意两个数最大的最大公倍数是多少. 解法:先用筛法筛素数,在这个过程中计算f(i),因为f(i)不会超过7,所以用一个二维数组统计 ...

  7. HDU 5317 RGCDQ (质数筛法,序列)

    题意:从1~1000,000的每个自然数质因子分解,不同因子的个数作为其f 值,比如12=2*2*3,则f(12)=2.将100万个数转成他们的f值后变成新的序列seq.接下来T个例子,每个例子一个询 ...

  8. 2015 HDU 多校联赛 5317 RGCDQ 筛法求解

    2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目  http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...

  9. hdu 5317 合数分解+预处理

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

随机推荐

  1. HOPE——懦怯囚禁人的灵魂,希望可以感受自由。强者自救,圣者渡人。

    人世间最美好的,就是希望 人世间最美好的,就是友谊 祝福所有相信希望的人,因为每个充满希望的人,都如此美丽. <肖申克的救赎>中的经典台词 1.Hope is a good thing,  ...

  2. codevs1003 电话连线

    题目描述 Description 一个国家有n个城市.若干个城市之间有电话线连接,现在要增加m条电话线(电话线当然是双向的了),使得任意两个城市之间都直接或间接经过其他城市有电话线连接,你的程序应该能 ...

  3. TCP/IP详解 学习四

    ARP地址解析协议 当一台主机把以太网数据帧发送到位于同一局域网上的另一台主机时,是根据 48 bit的以太网地址来确定目的接口的.设备驱动程序从不检查 I P数据报中的目的 I P地址. ARP的分 ...

  4. ISO 基础之 (十二) 文件管理

    一 文件管理 沙盒:让每个APP应用在手机上有一个独立的文件夹,相互之间不能访问. 沙盒目录:NSHomeDirectory() library: 库文件 tmp: 临时文件 1.NSData 也是一 ...

  5. hdu 2045 不容易系列之(3)—— LELE的RPG难题

    解题思路: f(n)=1,2,.....n-2,n-1,n 前n-2个已经涂好,那么n-1有两种可能 1.n-1与n-2和1 的颜色都不同 1 粉,   n-2 红,   n-1 绿.  那么n的颜色 ...

  6. LESSCSS的几点摘要

    字符串插值 变量可以用像 @{name} 这样的结构,以类似 ruby 和 php 的方式嵌入到字符串中: @base-url: "http://assets.fnord.com" ...

  7. 兼容amd,commonjs和browser的模块写法

    从uuid.js中抽出来的写法. (function() { var _global = this; // Export public API var obj = {}; obj.attr = fun ...

  8. Silverlight实例教程 – Datagrid,Dataform数据验证和ValidationSummary(转载)

    Silverlight 4 Validation验证实例系列 Silverlight实例教程 - Validation数据验证开篇 Silverlight实例教程 - Validation数据验证基础 ...

  9. PDP 有多种定义,具体哪一种还需研究!!!!

    PDP (用户面进行隧道转发的信息的保存协议) 编辑 本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 即PDP上下文,保存用户面进行隧道转发的所有信息,包括RNC/GGSN的 ...

  10. LNMP安装成功的界面

    在ubuntu13.10上面安装一个lnmp集成环境. 下面是安装成功的界面. ===========================add nginx and php-fpm on startup ...