2016-03-19 17:01:35

问题描述:

假设有三个命名为 A B C 的塔座 ,在塔座A上插有n个直径大小不相同,由小到大编号为1 ,2 ,3 ,··· ,n的圆盘,要求将A座上的圆盘移至塔座C

并按同样的顺序叠排,圆盘移动必须遵守下列规则:

1:每次只能移动一个圆盘 2:圆盘可以插在任意一个塔座上 3:任何时刻都不能将一个较大的圆盘放在一个较小的圆盘上

f(n):原始A柱有n个圆盘,全部移动到C柱的移动次数

我们要将编号为n的圆盘移动到C柱上,首先须得将A柱上的n-1个圆盘从A->B(途中可能经过C柱),这需要f(n-1)次移动,将第n个圆盘移动到C柱需要一次移动,

再把B柱上的n-1个圆盘从B->C(途中可能经过A柱)仍然需要f(n-1)次移动

从而:f(n) =2*f(n-1)+1(n>=2),f(1) = 1递推可得

f(n) = 2^n -1

移动的方式:

思路:
当n=1,圆盘1直接从从A移动到C(此时的A、C是相对的)
否则,先将A上的前n-1个圆盘从A借助C移动到B,然后将第n个圆盘直接移动到柱C
对B柱上的n-1个圆盘进行相似的操作移动到C,这是很明显的递归
//(1)
#include <stdio.h>
void move(char x,char y,int i)
{
static int j = ;
printf("%d: %d from %c to %c\n",++j,i,x,y);
} void Hanoi(char x,char y,char z,int n)
{
if(n == )
{
move(x,z,n);
return;
}
else{
Hanoi(x,z,y,n-);
move(x,z,n);
Hanoi(y,x,z,n-);
}
} int main()
{
int n;
scanf("%d",&n);
Hanoi('A','B','C',n);
return ;
}

//(2)
#include <stdio.h>
void move(int n,char A,char B,char C)
{
if(n == )
{
printf("%d:%c-->%c\n",n,A,C);
return;
}
else{
move(n-,A,C,B);
printf("%d:%c-->%c\n",n,A,C);
move(n-,B,A,C);
}
}
int main()
{
int n;
scanf("%d",&n);
move(n,'A','B','C');
return ;
}

参照:http://www.cnblogs.com/liangyan19910818/archive/2011/08/26/2153926.html#3259652

Hanoi塔的更多相关文章

  1. 经典递归算法研究:hanoi塔的理解与实现

    关于hanoi塔的原理以及概念,请Google,访问不了去百度. 主要设计到C中程序设计中递归的实现: 主代码实现如下: void hanoi(int src, int dest, int tmp, ...

  2. (转)Hanoi塔问题分析

    转自:http://shmilyaw-hotmail-com.iteye.com/blog/2077098 简介 关于Hanoi塔问题的分析,在网上的文章都写烂了.之所以打算写这篇文章,更多的是针对这 ...

  3. 栈与递归的实现(Hanoi塔问题等等)

    函数中有直接或间接地调用自身函数的语句,这样的函数称为递归函数.递归函数用 得好,可简化编程工作.但函数自己调用自己,有可能造成死循环.为了避免死循环,要 做到两点: (1) 降阶.递归函数虽然调用自 ...

  4. Hanoi塔问题——递归

    /////////////Hanoi塔问题///////#include<iostream>using namespace std;void hanoi(int i,char A,char ...

  5. Hanoi塔问题

    说明:河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时北越的首都,即现在的胡志明市:1883年法国数学家 Edouard Luc ...

  6. 【题解】Hanoi塔问题

    题目描述 有三根柱A,B,C.在柱A上有N块盘片,所有盘片都是大的在下面,小片能放在大片上面.并依次编好序号,现要将A上的N块片移到C柱上,每次只能移动一片,而且在同一根柱子上必须保持上面的盘片比下面 ...

  7. 汉诺塔(Hanoi)——小小算法

    传送门: 袁咩咩的小小博客 汉诺(Hanoi)塔源于古印度,是非常著名的智力趣题,大意如下: 勃拉玛是古印度的一个开天辟地的神,其在一个庙宇中留下了三根金刚石的棒,第一 根上面套着64个大小不一的圆形 ...

  8. 用函数递归的方法解决古印度汉诺塔hanoi问题

    问题源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规 ...

  9. 算法笔记_013:汉诺塔问题(Java递归法和非递归法)

    目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...

随机推荐

  1. 一、MyBatis简介与配置MyBatis+Spring+MySql

    //备注:该博客引自:http://limingnihao.iteye.com/blog/106076 1.1MyBatis简介 MyBatis 是一个可以自定义SQL.存储过程和高级映射的持久层框架 ...

  2. mvc5入门示例博客(有惊喜)

    因为一直做pc客户端,总感觉要被社会淘汰一样,近来时间又有空闲,索性学习一下asp.net mvc开发,试着追赶互联网的潮流. 话说在软件开发中,最费力的还是界面上,太多细节要关注了,从今年起便努力将 ...

  3. 「C语言」单链表/双向链表的建立/遍历/插入/删除

    最近临近期末的C语言课程设计比平时练习作业一下难了不止一个档次,第一次接触到了C语言的框架开发,了解了View(界面层).Service(业务逻辑层).Persistence(持久化层)的分离和耦合, ...

  4. [WF] Quickstart Sample

    [WF] Quickstart Sample 前言 Workflow Foundation(WF),总是给人一种很有用.可是却不知道怎么用的印象.这主要是因为前置的功课太多.要整合很多底层知识,才能完 ...

  5. js事件小记

    参考javascript编程全解  javascript高级程序设计 javascript经典实例 对事件的处理方式称为事件处理程序或事件侦听器 ,对于一个元素或事件,只能设定1个事件处理程序,却可以 ...

  6. osx的终端软件iterm2 之 修改外观 和 常用快捷键小结

    1.修改外观:透明,自己配色,最好还有个透明的小背景,比如这样: 那么你就要这样修改: 2.快捷键小结 (1)⌘ + d 横着分屏 / ⌘ + shift + d 竖着分屏  : 适合多操作的时候 ( ...

  7. SharePoint 更新文档库文档标题(Title)字段

    前言:记录下写代码中遇到的小问题,帮同事写一个批量更新文档库标题字段的小程序,本来以为就Update一下就可以了,10分钟可以搞定.结果10分钟过去了,代码写好了,执行起来不报错,调试也没问题,只是要 ...

  8. TortoiseSVN使用简介(转)

    TortoiseSVN使用简介 1 安装及下载client 端 2 什么是SVN(Subversion)? 3 为甚么要用SVN? 4 怎么样在Windows下面建立SVN Repository? 5 ...

  9. 【原】iOS动态性(一):动态添加属性的方法——关联(e.g. 向Category添加属性)

    想到要如何为所有的对象增加实例变量吗?我们知道,使用Category可以很方便地为现有的类增加方法,但却无法直接增加实例变量.不过从Mac OS X v10.6开始,系统提供了Associative ...

  10. iOS- 利用AFNetworking3.0+(最新AFN) - 实现文件断点下载

    官方建议AFN的使用方法   0.导入框架准备工作 •1. 将AFNetworking3.0+框架程序拖拽进项目   •2. 或使用Cocopod 导入AFNetworking3.0+   •3.   ...