C - Prime number or not

Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

Your task is simple.Give you a number N, you should judge whether N is a prime number or not.

Input

There are multiple test cases. For each test case, there is an integer N(2<=N<=10^18).

Output

For each test case, you should output whether N is a prime number or not.If N is a prime number , you should output "It is a prime number."; otherwise you should output "It is not a prime number.";

Sample Input

2 4

Sample Output

It is a prime number. It is not a prime number.

这里关键的问题在于数据达到了1亿亿,没办法用普通的方法进行运算,所以这里用到了米勒拉宾大素数判定方法。

算法流程:根据费马小定理,a^(n-1)mod n==1,1<a<n,n为奇素数。随机在1~n的范围内取一个数a,进行式子的判定,返回1,就是伪素数,否则就是合数。因为伪素数是素数 的可能性为3/4,也就是正确率是1-1/4^k,所以我们要按定一个k使得正确率尽可能得大。所以要多次重复取随机数,然后判定。

文字代码:

1:重复MAX次运算

2:在1~n中取得随机数a

3:计算a^(n-1)mod n?=1,在这个计算里,注意到n可能很大,所以a^(n-1)可能越界,就想到用快速幂来边乘,边取模,但是又发现在n很大的时候,a*a都有可能溢出,所以想到了用快速幂的方法,进行快速积取模,边加边取模。这里的两个快速可避免溢出

4:在3中可得到的数如果为1,则在循环未结束前继续从2开始操作,否则直接返回0,表示n是合数

5:如果上面的循环能完整做完,说明n已经是强伪素数,我们可以返回1,判定为素数。

 #include<stdio.h>
#include<stdlib.h>
#include<time.h>
#define MAX 10
__int64 muti(__int64 a,__int64 b,__int64 m)
{
__int64 ans=;
while(b)
{
if(b&)
ans=(ans+a)%m;
a=*a%m;
b/=;
}
return ans;
}
__int64 pow(__int64 a,__int64 b,__int64 m)
{
__int64 ans=;
while(b)
{
if(b&)
ans=muti(ans,a,m);
a=muti(a,a,m);//二进制。快速幂的思想
b/=;
}
return ans;
}
int miller_rabin(long long n)
{
__int64 i,a;
if(n==)
return ;
if(n<||!(n&))
return ;
srand((unsigned)time(NULL));
for(i=;i<=MAX;i++)
{
a=rand()%(n-)+;
if(pow(a,n-,n)!=)
return ;
}
return ;
}
int main()
{
__int64 n;
while(scanf("%I64d",&n)!=EOF)
if(miller_rabin(n))
printf("It is a prime number.\n");
else printf("It is not a prime number.\n");
return ;
}

FZU 1649 Prime number or not米勒拉宾大素数判定方法。的更多相关文章

  1. csu 1552(米勒拉宾素数测试+二分图匹配)

    1552: Friends Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 723  Solved: 198[Submit][Status][Web Bo ...

  2. HDU2138 & 米勒拉宾模板

    题意: 给出n个数,判断它是不是素数. SOL: 米勒拉宾裸题,思想方法略懂,并不能完全理解,所以实现只能靠背模板.... 好在不是很长... Code: /*==================== ...

  3. HDU 2138 How many prime numbers (判素数,米勒拉宾算法)

    题意:给定一个数,判断是不是素数. 析:由于数太多,并且太大了,所以以前的方法都不适合,要用米勒拉宾算法. 代码如下: #include <iostream> #include <c ...

  4. Miller_Rabin (米勒-拉宾) 素性测试

    之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...

  5. Miller_Rabin(米勒拉宾)素数测试

    2018-03-12 17:22:48 米勒-拉宾素性检验是一种素数判定法则,利用随机化算法判断一个数是合数还是可能是素数.卡内基梅隆大学的计算机系教授Gary Lee Miller首先提出了基于广义 ...

  6. C++米勒拉宾算法模板

    //我也忘了从哪找来的板子,不过对于2^63级的数据请考虑使用java内置的米勒拉宾算法. 1 #include <iostream> #include <string> #i ...

  7. POJ 1811Prime Test(米勒拉宾素数测试)

    直接套用模板,以后接着用 这里还有一个素因子分解的模板 #include <map> #include <set> #include <stack> #includ ...

  8. Miller_Rabin(米勒拉宾)素数测试算法

    首先需要知道两个定理: 1: 费马小定理: 假如p是素数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p). 2:二次探测定理:如果p是素数,x是小于p的正整数,且,那么要么x=1,要么x ...

  9. Prime Time UVA - 10200(精度处理,素数判定)

    Problem Description Euler is a well-known matematician, and, among many other things, he discovered ...

随机推荐

  1. Sencha Touch 手机移动开发框架 HTML5 项目压缩方案;

    Sencha Touch框架生成基本项目目录结构 Index.html/ App.js App.json /touch[sdk]/ /Sencha-touch.js /src Resources/ A ...

  2. PR 不能手动修改素材尺寸的解决方法

    选中素材,然后再特效控制台那边点击一下运动就可以在预览窗口直接用鼠标调整画面大小和位移了.

  3. 【Gym 100015A】Another Rock-Paper-Scissors Problem

    题 题意 Sonny出石头剪刀布的猜拳策略是 先出R,然后每连续两段都是打败前一段的出拳, 现在问你第n回合打败他要出什么. 分析 他的策略 R P S PSR  SRP PSRSRPRPS SRPR ...

  4. 13. (转) Android一些布局属性详解

    RelativeLayout用到的一些重要的属性: 第一类:属性值为true或false     android:layout_centerHrizontal  水平居中      android:l ...

  5. BZOJ3626 LCA

    Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. 设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先. ...

  6. poj 3683 2-SAT入门

    原题模型:两者(A,B)不能同时取 #include "cstdio" #include "vector" #include "stack" ...

  7. TYVJP1933 绿豆蛙的归宿

    背景 随着新版百度空间的上线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿. 描述 给出一个有向无环图,起点为1终点为N,每条边都有一个长度,并且从起点出发能够到达所有的点,所有的点也都能够到达 ...

  8. CVE-2014-0160 Heartbleed Vul Analysis && OpenSSL Cryptographic Software Library Bug

    目录 . Heartbleed漏洞简介 . 漏洞造成的风险和影响 . 漏洞的测试.POC . OpenSSL漏洞源代码分析 . 防御.修复方案 . 从漏洞中得到的攻防思考 1. Heartbleed漏 ...

  9. Beta版本——冲刺计划及安排

    我说的都队 031402304 陈燊 031402342 许玲玲 031402337 胡心颖 03140241 王婷婷 031402203 陈齐民 031402209 黄伟炜 031402233 郑扬 ...

  10. shared_ptr<> reset

    // std_tr1__memory__shared_ptr_reset.cpp // compile with: /EHsc #include <memory> #include < ...