F - Heavy Transportation

Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u

Description

Background
Hugo
Heavy is happy. After the breakdown of the Cargolifter project he can
now expand business. But he needs a clever man who tells him whether
there really is a way from the place his customer has build his giant
steel crane to the place where it is needed on which all streets can
carry the weight.

Fortunately he already has a plan of the city with all
streets and bridges and all the allowed weights.Unfortunately he has no
idea how to find the the maximum weight capacity in order to tell his
customer how heavy the crane may become. But you surely know.

Problem
You are given the plan of the city, described
by the streets (with weight limits) between the crossings, which are
numbered from 1 to n. Your task is to find the maximum weight that can
be transported from crossing 1 (Hugo's place) to crossing n (the
customer's place). You may assume that there is at least one path. All
streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each
city the number n of street crossings (1 <= n <= 1000) and number m
of streets are given on the first line. The following m lines contain
triples of integers specifying start and end crossing of the street and
the maximum allowed weight, which is positive and not larger than
1000000. There will be at most one street between each pair of
crossings.

Output

The output for every scenario begins with a line containing "Scenario
#i:", where i is the number of the scenario starting at 1. Then print a
single line containing the maximum allowed weight that Hugo can
transport to the customer. Terminate the output for the scenario with a
blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4
每条路都有一个限制的重量 求从1到n最多可以装载多少货物顺利通过
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
//const int inf=0x7fffffff;
const int MAXN=;
//#define typec int
const int INF=0x3f3f3f3f;//防止后面溢出,这个不能太大
bool vis[MAXN];
int dis[MAXN];
int map[MAXN][MAXN];
int n;
void Dijkstra(int beg)
{
for(int i=; i<=n; i++)
{
dis[i]=map[beg][i];
vis[i]=false;
}
dis[beg]=;
for(int j=; j<n; j++)
{
int k=-;
int Min=-;
for(int i=; i<=n; i++)
if(!vis[i]&&dis[i]>Min)
{
Min=dis[i];
k=i;
}
if(k==-)
break;
vis[k]= true;
for(int i=; i<=n; i++)
if(!vis[i]&&dis[i]<min(dis[k],map[i][k]))
{
dis[i]=min(dis[k],map[i][k]); }
}
}
int main(){
int t;
scanf("%d",&t);
int cnt=;
while(t--){
cnt++;
int m;
memset(vis,false,sizeof(vis));
scanf("%d%d",&n,&m);
/*for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++){
if(i==j)
map[i][i]=0;
else
map[i][j]=map[j][i]=INF;
}
}*/
memset(map,,sizeof(map));
int u,v,w;
for(int i=;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
map[u][v]=map[v][u]=w;
}
Dijkstra();
printf("Scenario #%d:\n",cnt);
printf("%d\n",dis[n]);
puts(""); }
return ;
}

POJ 1797 Heavy Transportation (Dijkstra变形)的更多相关文章

  1. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  2. POJ 1797 Heavy Transportation SPFA变形

    原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  3. POJ 1797 Heavy Transportation (Dijkstra)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

  4. POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  5. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  6. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  7. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  8. POJ 1797 Heavy Transportation(最大生成树/最短路变形)

    传送门 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 31882   Accept ...

  9. POJ 1797 Heavy Transportation (dijkstra 最小边最大)

    Heavy Transportation 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Backgro ...

随机推荐

  1. Scala 中的函数式编程基础(一)

    主要来自 Scala 语言发明人 Martin Odersky 教授的 Coursera 课程 <Functional Programming Principles in Scala>. ...

  2. AngularJS——karma的安装

    1,前言: 刚刚学过了 grunt的安装以及使用,grunt的作用就是让我们平常不想做的任务能够自动化完成,并且可以自己 自定义任务,那么karma是什么呢? Karma是Testcular的新名字, ...

  3. git的牛逼

    http://rogerdudler.github.io/git-guide/index.zh.html

  4. JAVA成员变量为什么不能在类体中先定义后赋值

    package dx; public class Test1 { int a111;//定义成员变量(全局变量) // a = 1;//此处若给变量赋值,会报错,JAVA所有的除定义或声明语句之外的任 ...

  5. iOS边练边学--NSURLSessionDataTask实现文件真正的断点续传

    实现重点: NSURLSessionDataTask要设置请求头,从路径中获取文件已经下载的长度(文件没有下载过的话,长度为0).通过这个长度设置请求的Range 如图: 接收到请求的时候key:文件 ...

  6. 利用Spring中的HtmlUtils.htmlEscape(input)过滤html

    fatherModule.setModuelName(HtmlUtils.htmlEscape(fatherModule.getModuelName())); log.info(HtmlUtils.h ...

  7. 【深入】java 单例模式(转)

    [深入]java 单例模式 关于单例模式的文章,其实网上早就已经泛滥了.但一个小小的单例,里面却是有着许多的变化.网上的文章大多也是提到了其中的一个或几个点,很少有比较全面且脉络清晰的文章,于是,我便 ...

  8. codeforces 86D : Powerful array

    Description An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary su ...

  9. codevs1225 八数码难题

    题目描述 Description Yours和zero在研究A*启发式算法.拿到一道经典的A*问题,但是他们不会做,请你帮他们.问题描述 在 3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数 ...

  10. jQuery的查找

    children([expr])概述 :取得一个包含匹配的元素集合中每一个元素的所有子元素的元素集合.可以通过可选的表达式来过滤所匹配的子元素.注意:parents()将查找所有祖辈元素,而child ...