POJ2677 Tour(DP+双调欧几里得旅行商问题)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 3929 | Accepted: 1761 |
Description
Write a program that, given a set of n points in the
plane, computes the shortest closed tour that connects the points according to
John's strategy.
Input
in the file stands for a particular set of points. For each set of points the
data set contains the number of points, and the point coordinates in ascending
order of the x coordinate. White spaces can occur freely in input. The input
data are correct.
Output
result to the standard output from the beginning of a line. The tour length, a
floating-point number with two fractional digits, represents the result. An
input/output sample is in the table below. Here there are two data sets. The
first one contains 3 points specified by their x and y coordinates. The second
point, for example, has the x coordinate 2, and the y coordinate 3. The result
for each data set is the tour length, (6.47 for the first data set in the given
example).
Sample Input
3
1 1
2 3
3 1
4
1 1
2 3
3 1
4 2
Sample Output
6.47
7.89 参考博客:http://www.cnblogs.com/-sunshine/archive/2012/07/23/2605251.html
J.L. Bentley 建议通过只考虑双调旅程(bitonic tour)来简化问题,这种旅程即为从最左点开始,严格地从左到右直至最右点,然后严格地从右到左直至出发点。下图(b)显示了同样的7个点的最短双调路线。在这种情况下,多项式的算法是可能的。事实上,存在确定的最优双调路线的O(n*n)时间的算法。
图a
图b
注:在一个单位栅格上显示的平面上的七个点。 a)最短闭合路线,长度大约是24.89。这个路线不是双调的。b)相同点的集合上的最短双调闭合路线。长度大约是25.58。
这是一个算导上的思考题15-1。
首先将给出的点排序,关键字x,重新编号,从左至右1,2,3,…,n。
定义p[i][j],表示结点i到结点j之间的距离。
定义d[i][j],表示从i连到1,再从1连到j,(注意,i>j,且并没有相连。)
对于任意一个点i来说,有两种连接方法,一种是如图(a)所示,i与i-1相连,另一种呢是如图(b),i与i-1不相连。
根据双调旅程,我们知道结点n一定与n相连,那么,如果我们求的d[n][n-1],只需将其加上p[n-1][n]就是最短双调闭合路线。
根据上图,很容易写出方程式:
dp[i][j]=dp[i-1][j]+dist[i][i-1]; i这一点是i+1走到的
dp[i][i-1]=min(dp[i][i-1],dp[i-1][j]+dist[j][i]); i这一点是从j走到的,找到j的最小值
自己的理解:刘汝佳书上的思路看懂了,但是老卡,抽空在想想他的思路,这个思路也好理解,在dp[i][j]这个位置,到下一个i+1,有两种情况要么是i走到的,要么是j走到的,如果是i走到的就对应第一个转移方程,如果是j走到的 dp[i][j] == dp[j][i],所以对应第二个方程
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
const int MAX = + ;
struct points
{
double x,y;
};
points point[MAX];
double d[MAX][MAX];
int cmp(points a, points b)
{
return (b.x - a.x > 0.00001);
}
double Min(double a, double b)
{
if(a - b > 0.00001)
return b;
else
return a;
}
double dist(int a, int b)
{
return sqrt( (point[a].x - point[b].x) * (point[a].x - point[b].x) + (point[a].y - point[b].y) * (point[a].y - point[b].y));
}
int main()
{
int n;
while(scanf("%d", &n) != EOF)
{
for(int i = ; i <= n; i++)
scanf("%lf%lf", &point[i].x, &point[i].y);
sort(point + , point + n + , cmp);
if(n == )
{
printf("0\n");
continue;
}
d[][] = ;
for(int i = ; i <= n; i++)
d[i][] = dist(i, ); for(int i = ; i < n; i++)
{
d[i + ][i] = 10000000.0;
for(int j = ; j < i; j++)
{
d[i + ][j] = d[i][j] + dist(i, i + );
d[i + ][i] = Min(d[i + ][i], d[i][j] + dist(j,i + ));
}
}
printf("%.2lf\n", d[n][n - ] + dist(n - , n));
}
return ;
}
POJ2677 Tour(DP+双调欧几里得旅行商问题)的更多相关文章
- 2014百度之星第二题Disk Schedule(双调欧几里得旅行商问题+DP)
Disk Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- 2014年百度之星程序设计大赛 - 资格赛 1002 Disk Schedule(双调欧几里得旅行商问题)
Problem Description 有非常多从磁盘读取数据的需求,包含顺序读取.随机读取.为了提高效率,须要人为安排磁盘读取.然而,在现实中,这样的做法非常复杂.我们考虑一个相对简单的场景.磁盘有 ...
- 双调欧几里得旅行商问题(TSPhdu2224)
http://acm.hdu.edu.cn/showproblem.php?pid=2224 The shortest path Time Limit: 1000/1000 MS (Java/Othe ...
- hdu 2224 双调欧几里得旅行商问题tsp
/* 题意:平面上n个点,确定一条连接各点的最短闭合旅程且每个点仅用一次.这个解的一般形式为NP的(在多项式时间内可以求出) 建议通过只考虑双调旅程(bitonictour)来简化问题,这种旅程即为从 ...
- 欧几里得旅行商问题 java与c++实现
双调欧几里得旅行商问题是一个经典动态规划问题.<算法导论(第二版)>思考题15-1 旅行商问题描述:平面上n个点,确定一条连接各点的最短闭合旅程.这个解的一般形式为NP的(在多项式时间内可 ...
- 【HDU2224】The shortest path(双调欧几里得dp)
算法导论上一道dp,挺有趣的.于是就研究了一阵. dp(i, j)代表从左边第一个点到第i个点与从从左边最后一个点(即为第一个点)到j点的最优距离和.于是找到了子状态. 决策过程 dp[i][j] = ...
- POJ2677 Tour[DP 状态规定]
Tour Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4307 Accepted: 1894 Description ...
- poj2677 Tour
题意: 双调欧几里得旅行商问题. 思路: dp.定义dp[i][j](i <= j)为从点j从右向左严格按照x坐标递减顺序走到点1,之后再从点1从左向右严格按照x坐标递增的顺序走到点i,并且在此 ...
- code1213 解的个数 扩展欧几里得
很不错的题,加深了我对exgcd的理解 (以前我认为做题就是搜索.dp...原来数学也很重要) 理解了几个小时,终于明白了.但我什么都不打算写. 看代码吧: #include<iostream& ...
随机推荐
- 优化mysql主从下的slave延迟问题
一般而言,slave相对master延迟较大,其根本原因就是slave上的复制线程没办法真正做到并发.简单说,在master上是并发模式(以InnoDB引擎为主)完成事务提交的,而在slave上,复制 ...
- HAXM cannot be installed nutil TV-x is enabled
提示错误:如图 HAXM cannot be installed nutil TV-x is enabled 问题原因: 电脑没有启动Intel的虚拟化技术 解决方法: 重启电脑,进BIOS中启动VT ...
- no.3 base64
tool.chinaz.com的base64有的无法解密: 如:ZXZhbCgkX1BPU1RbcDRuOV96MV96aDNuOV9qMXVfU2gxX0oxM10pNTU2NJC3ODHHYWJI ...
- VBA的一些使用心得
VBA的知识比较零散,因此开一贴记录一下使用VBA时的一些方法和心得.主要针对Excel,参考在这里 1. Collection Class 大部分情况下,Collection Class是比数组(A ...
- Caffe学习系列(8):solver优化方法
上文提到,到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: &q ...
- Django添加Last-Modified和ETag
用Django REST Framework做的REST API,其中有个API有这样的需求: APP端请求这个API,服务器端从数据库读数据,返回json.返回的数据量稍微有些大,但是可能一年才修改 ...
- 20135316王剑桥 linux第十周课实验笔记
关于who 功能说明:显示目前登入系统的用户信息. 语 法:who [-Himqsw][--help][--version][am i][记录文件] 补充说明:执行这项指令可得知目前有那些用户登入系统 ...
- Chrome扩展开发(Gmail附件管理助手)系列之〇——概述
目录: 0.Chrome扩展开发(Gmail附件管理助手)系列之〇——概述 1.Chrome扩展开发之一——Chrome扩展的文件结构 2.Chrome扩展开发之二——Chrome扩展中脚本的运行机制 ...
- SpringMVC重定向视图RedirectView小分析
目录 前言 RedirectView介绍 实例讲解 总结 前言 SpringMVC是目前主流的Web MVC框架之一. 如果有同学对它不熟悉,那么请参考它的入门blog:http://www.cnbl ...
- 清除sql server 登录的时候记住的账户
SQl 2008如何清除登陆过的服务器名称 C:\Users\Administrator\AppData\Roaming\Microsoft\Microsoft SQL Server\100\To ...