大致题意:给出一队士兵的身高,一开始不是按身高排序的。要求最少的人出列,使原序列的士兵的身高先递增后递减。

求递增和递减不难想到递增子序列,要求最少的人出列,也就是原队列的人要最多。

1 2 3 4 5 4 3 2 1

这个序列从左至右看前半部分是递增,从右至左看前半部分也是递增。所以我们先把从左只右和从右至左的LIS分别求出来。

如果结果是这样的:

  A[i]={1.86 1.86 1.30621 2 1.4 1 1.97 2.2} //原队列

  a[i]={1 1 1 2 2 1 3 4}

  b[i]={3 3 2 3 2 1 1 1}

如果是A[1]~A[i]递增,A[i+1]~A[8]递减。此时就是求:a[1]~a[i]之间的一个值与b[i+1]~b[8]之间的一个值的和的最大值。

O(n^2)和O(nlogn)算法都可以过。

O(n^2)算法:

#include <iostream>
#include <cstdio>
using namespace std; const int Max=1e3+; int main()
{
//freopen("in.txt","r",stdin);
int n;
scanf("%d",&n);
double a[Max]={};
for(int i=; i<n; i++)
scanf("%f",a+i);
int l[Max]= {},r[Max]= {};
l[]=r[n-]=;
for(int i = ; i < n; i++)
{
int maxLen = ;
for(int j = ; j < i; j++)
if(a[j]<a[i])
maxLen = max(maxLen,l[j]);
l[i] = maxLen + ;
}
for(int i=n-; i>=; i--)
{
int maxLen=;
for(int j=n-; j>i; j--)
if(a[j]<a[i])
maxLen=max(maxLen,r[j]);
r[i]=maxLen+;
}
int maxlen=;
for(int i=;i<n-;i++)
for(int j=i+;j<n;j++)
maxlen=max(maxlen,l[i]+r[j]);
printf("%d\n",n-maxlen);
return ;
}

O(nlogn)算法

#include <iostream>
#include <cstdio>
using namespace std; const int Max=1e3+;
int l[Max]= {},r[Max]= {};
double B[Max];
int BinarySearch(double *a, double value, int n)
{
int low = ;
int high = n - ;
while(low <= high)
{
int mid = (high + low) / ;
if(a[mid] == value)
return mid;
else if(value<a[mid])
high = mid - ;
else
low = mid + ;
}
return low;
}
int LIS_DP_NlogN(double *a, int n,int *Len)
{
int nLISLen = ;
B[] = a[];
for(int i = ; i < n; i++)
{
if(a[i] > B[nLISLen - ])
{
B[nLISLen] = a[i];
nLISLen++;
Len[i]=nLISLen;
}
else
{
int pos = BinarySearch(B, a[i], nLISLen);
B[pos] = a[i];
Len[i]=pos+;
}
}
return nLISLen;
}
int main()
{
//freopen("in.txt","r",stdin);
int n;
scanf("%d",&n);
double a[Max]={};
double b[Max]={};
l[]=r[]=;
for(int i=; i<n; i++)
{
scanf("%f",a+i);
b[n-i-]=a[i];
}
LIS_DP_NlogN(a,n,l);
LIS_DP_NlogN(b,n,r);
int maxlen=;
for(int i=;i<n-;i++)
for(int j=n-i-;j>=;j--)
maxlen=max(maxlen,l[i]+r[j]);
printf("%d\n",n-maxlen);
return ;
}

POJ 1836 Alignment 最长递增子序列(LIS)的变形的更多相关文章

  1. 动态规划(DP),最长递增子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...

  2. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  3. 最长回文子序列LCS,最长递增子序列LIS及相互联系

    最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...

  4. 一个数组求其最长递增子序列(LIS)

    一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...

  5. 算法面试题 之 最长递增子序列 LIS

    找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E ...

  6. 算法之动态规划(最长递增子序列——LIS)

    最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...

  7. 最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现

    关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已 ...

  8. 动态规划 - 最长递增子序列(LIS)

    最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...

  9. 最长递增子序列LIS再谈

    DP模型: d(i) 以第 i 个元素结尾的最长递增子序列的长度. 那么就有 d(i) = max(d(j)) + 1;(j<i&&a[j]<a[i]),答案 max(d( ...

随机推荐

  1. CentOS下Red5安装

    Red5介绍 Red5是一个采用Java开发开源的Flash流媒体服务器.它支持:把音频(MP3)和视频(FLV)转换成播放流: 录制客户端播放流(只支持FLV):共享对象:现场直播流发布:远程调用. ...

  2. 移植UE4的模型操作到Unity中

    最近在Unity上要写一个东东,功能差不多就是在Unity编辑器上的旋转,移动这些,在手机上也能比较容易操作最好,原来用Axiom3D写过一个类似的,有许多位置并不好用,刚好在研究UE4的源码,在模型 ...

  3. Android实现自适应正方形GridView(陌陌引导页面效果)

    1.http://blog.chengyunfeng.com/?p=465 2.备注,慢慢研究

  4. 精选19款华丽的HTML5动画和实用案例

    下面是本人收集的19款超酷HTML5动画和实用案例,觉得不错,分享给大家. 1.HTML5 Canvas火焰喷射动画效果 还记得以前分享过的一款HTML5烟花动画HTML5 Canvas烟花特效,今天 ...

  5. C# 调用百度地图Web服务API

    最近公司项目中需要根据两个地点的交通路径和距离做一些数据推荐,为了程序的稳定和用户体验所以想从百度地图 API 采集数据保存到数据库中,经过一翻研究之后选定了百度地图 Web 服务 API 中的 Di ...

  6. XCActionBar 「Xcode 中的 Alfred」

    下载地址:https://github.com/pdcgomes/XCActionBar 基本命令: (1)「command+shift+8」或者双击「command」键可以打开「动作输入框窗口」 ( ...

  7. 再探 Ext JS 6 (sencha touch/ext升级版) 变化篇 (编译命令、滚动条、控制层、模型层、路由)

    从sencha touch 2.4.2升级到ext js 6,cmd版本升级到6.0之后发生了很多变化 首先从cmd说起,cmd 6 中sencha app build package不能使用了,se ...

  8. php利用smtp发送邮件

    PHP : 5.6.8 email工具类下载地址: http://files.cnblogs.com/files/rhythmK/email.class.zip 发送邮件代码如下: require_o ...

  9. CSS HACK 及常见问题

    一.CSS常用hack 1.方式一:条件注释法 这种方式是IE浏览器专有的Hack方式,微软官方推荐使用的hack方式.举例如下 只在IE下生效 <!--[if IE]> 这段文字只在IE ...

  10. struts2 hello world

    注意:仅需要如下这些jar包,否则启动时会出错 commons-lang3-3.2.jar commons-logging-1.1.3.jarcommons-logging-api-1.1.jarfr ...