1. 知识点准备

在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念。

a. 卷积

关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性,以下面这个一维的卷积为例子:

第一个特性是稀疏连接。可以看到, layer m 上的每一个节点都只与 layer m-1 对应区域的三个节点相连接。这个局部范围也叫感受野。第二个特性是相同颜色的线条代表了相同的权重,即权重共享。这样做有什么好处呢?一方面权重共享可以极大减小参数的数目,学习起来更加有效,另一方面,相同的权重可以让过滤器不受图像位置的影响来检测图像的特性,从而使 CNN 具有更强的泛化能力。

b. 池化

理论上,我们将图像利用不同的过滤器通过卷积之后得到了多个卷积之后的图像,然后直接利用这些图像进行分类,但是这样计算量太大了。利用池化操作可以将数据量减小,同时在一定程度上保留原有的图像特征。关于 pooling, 概念更加简单了,详情可以参考这里。池化又可以分为平均池化和最大池化,这里我们将采用最大池化。注意到,池化的区域是不重叠的,卷积的感受野是重叠的。

2. 卷积神经网络的搭建

下图是手写数字识别中采用的 lenet-5 简单的卷积神经网络模型:

  1. 原图是 28 × 28 的手写数字图片,通过第一次 20 个 5 × 5 的卷积核之后,得到 20 张卷积图片。卷积核的权重是取一定范围内的随机值,这样,一张 28 × 28 的图片就变为 20 张 (28-5+1)× (28-5+1)=24×24 的图片了。

  2. 将 24×24 的图片进行 2 × 2 的最大池化,得到 20 张 12 × 12 的图片。该图片的像素还需要进行 tanh 函数的变换才能作为下一个卷积层的输入。

  3. 将 tanh 变化之后的 12 × 12 大小的图片同样进行 20 × 50 个 5 × 5 的卷积操作之后得到 50 张 (12-5+1)× (12-5+1) = 8 × 8 的图片。

  4. 将 8×8 的图片进行 2×2 的最大池化,得到 50 张 4×4 的图片,再经过 tanh 函数进行归一化处理,就可以作为 MLP 的 800 个输入了。

  5. 余下来就是 MLP 的训练工作了。

3. LR, MLP,CNN 识别代码

已经训练好的模型系数的下载地址

三种方法识别手写数字的代码:

 import cPickle

 import numpy

 import theano
import theano.tensor as T
from theano.tensor.signal import downsample
from theano.tensor.nnet import conv ########################################
# define the classifer constructs
######################################## class LogisticRegression(object):
def __init__(self, input, W=None, b=None): if W is None:
fle = open("../model_param/lr_sgd_best.pkl")
W, b = cPickle.load(fle)
fle.close() self.W = W
self.b = b self.outputs = T.nnet.softmax(T.dot(input, self.W) + b) self.pred = T.argmax(self.outputs, axis=1) class MLP(object):
def __init__(self, input, params=None):
if params is None:
fle = open("../model_param/mlp_best.pkl")
params = cPickle.load(fle)
fle.close() self.hidden_W, self.hidden_b, self.lr_W, self.lr_b = params self.hiddenlayer = T.tanh(T.dot(input, self.hidden_W) + self.hidden_b) self.outputs = T.nnet.softmax(T.dot(self.hiddenlayer, self.lr_W) \
+ self.lr_b) self.pred = T.argmax(self.outputs, axis=1) class CNN(object):
def __init__(self, input, params=None):
if params is None:
fle = open("../model_param/cnn_best.pkl")
params = cPickle.load(fle)
fle.close() ################
self.layer3_W, self.layer3_b, self.layer2_W, self.layer2_b, \
self.layer1_W, self.layer1_b, self.layer0_W, self.layer0_b = params # compute layer0
self.conv_out0 = conv.conv2d(input=input, filters=self.layer0_W)
# filter_shape=(20, 1, 5, 5), image_shape=(1, 1, \
# 28, 28))
self.pooled_out0 = downsample.max_pool_2d(input=self.conv_out0, \
ds=(2, 2), ignore_border=True)
self.layer0_output = T.tanh(self.pooled_out0 + \
self.layer0_b.dimshuffle('x', 0, 'x', 'x')) # compute layer1
self.conv_out1 = conv.conv2d(input=self.layer0_output, filters=self.layer1_W)
# filter_shape=(50, 20, 5, 5), image_shape=(1, 20, \
# 12, 12))
self.pooled_out1 = downsample.max_pool_2d(input=self.conv_out1, \
ds=(2, 2), ignore_border=True)
self.layer1_output = T.tanh(self.pooled_out1 + \
self.layer1_b.dimshuffle('x', 0, 'x', 'x')) # compute layer2
self.layer2_input = self.layer1_output.flatten(2) self.layer2_output = T.tanh(T.dot(self.layer2_input, self.layer2_W) + \
self.layer2_b) # compute layer3
self.outputs = T.nnet.softmax(T.dot(self.layer2_output, self.layer3_W)\
+ self.layer3_b) self.pred = T.argmax(self.outputs, axis=1) ########################################
# build classifier
######################################## def lr(input):
input.shape = 1, -1 x = T.fmatrix('x')
classifer = LogisticRegression(input=x) get_p_y = theano.function(inputs=[x], outputs=classifer.outputs)
pred_y = theano.function(inputs=[x], outputs=classifer.pred)
return (get_p_y(input), pred_y(input)) def mlp(input):
input.shape = 1, -1 x = T.fmatrix('x')
classifer = MLP(input=x) get_p_y = theano.function(inputs=[x], outputs=classifer.outputs)
pred_y = theano.function(inputs=[x], outputs=classifer.pred)
return (get_p_y(input), pred_y(input)) def cnn(input):
input.shape = (1, 1, 28, 28)
x = T.dtensor4('x')
classifer = CNN(input=x)
get_p_y = theano.function(inputs=[x], outputs=classifer.outputs)
pred_y = theano.function(inputs=[x], outputs=classifer.pred)
return (get_p_y(input), pred_y(input))

CNN 手写数字识别的更多相关文章

  1. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  2. Keras cnn 手写数字识别示例

    #基于mnist数据集的手写数字识别 #构造了cnn网络拟合识别函数,前两层为卷积层,第三层为池化层,第四层为Flatten层,最后两层为全连接层 #基于Keras 2.1.1 Tensorflow ...

  3. pytorch CNN 手写数字识别

    一个被放弃的入门级的例子终于被我实现了,虽然还不太完美,但还是想记录下 1.预处理 相比较从库里下载数据集(关键是经常失败,格式也看不懂),更喜欢直接拿图片,从网上找了半天,最后从CSDN上下载了一个 ...

  4. kaggle 实战 (2): CNN 手写数字识别

    文章目录 Tensorflow 官方示例 CNN 提交结果 Tensorflow 官方示例 import tensorflow as tf mnist = tf.keras.datasets.mnis ...

  5. keras框架的CNN手写数字识别MNIST

    参考:林大贵.TensorFlow+Keras深度学习人工智能实践应用[M].北京:清华大学出版社,2018. 首先在命令行中写入 activate tensorflow和jupyter notebo ...

  6. 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

  7. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  8. 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)

    上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...

  9. [Python]基于CNN的MNIST手写数字识别

    目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...

随机推荐

  1. xamarin.android之 Android 4.4+ 获取图片真实路径

    Android 4.4以下 选择图片是可以获取到图片路径的.高于Android 4.4获取图片路径只是获取到一个图片编号. 所以需要针对Android版本进行路径解析: #region 高于 v4.4 ...

  2. Python中的库使用之一 PIL

    先上代码:本文主要工给自己参考,在需要的时候直接搜索查找就行了,不想看没有实际运行例子的文档,当参考完这部分还哦未能解决问题在参考PIL的相关文档! Skip to content This repo ...

  3. Hadoop_HDFS文件读写代码流程解析和副本存放机制

    Hadoop学习笔记总结 01.RPC(远程过程调用) 1. RPC概念 远程过程指的不是同一个进程的调用.它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议. 不能直接拿到远 ...

  4. hdu 5862 Counting Intersections

    传送门:hdu 5862 Counting Intersections 题意:对于平行于坐标轴的n条线段,求两两相交的线段对有多少个,包括十,T型 官方题解:由于数据限制,只有竖向与横向的线段才会产生 ...

  5. 从c到c++

    1,stack模板类(头文件为<stack>)需要定义两个参数:元素类型(必要).容器类型(默认为deque), 定义stack对象 stack <string> s 基本操作 ...

  6. C/C++学习----C语言简介

    [开发环境] 物理机版本:Win 7 旗舰版(64位) IDE版本:Visual Studio 2013简体中文旗舰版(cn_visual_studio_ultimate_2013_with_upda ...

  7. EZ GUI Button和Checkbox创建

    第一次接触EZ GUI,记录学习过程 准备工作 导入资源 导入 EZ GUI 1.0795.unitypackage 和 SpriteManager2 v1.92.unitypackage EZGUI ...

  8. Unity3D 多平台 预编译 宏定义

    平台定义 UNITY_EDITOR 编辑器调用. UNITY_STANDALONE_OSX 专门为Mac OS(包括Universal,PPC和Intelarchitectures)平台的定义. UN ...

  9. 第三方登录之qq登录(转载)

    iOS QQ第三方登实现   我们经常会见到应用登陆的时候会有QQ,微信,微博等的第三方登陆 如图: 下面我们主要讲一下qq的第三方登陆如何实现 首先,到官网注册: http://wiki.conne ...

  10. VS的代码分析工具

    来自:[译]Visual Studio 2008 Code Metrics http://www.cnblogs.com/live41/archive/2010/02/08/1665627.html ...