01_传说中的车(Fabled Rooks UVa 11134 贪心问题)
问题来源:刘汝佳《算法竞赛入门经典--训练指南》 P81:
问题描述:你的任务是在n*n(1<=n<=5000)的棋盘上放n辆车,使得任意两辆车不相互攻击,且第i辆车在一个给定的矩形R之内。
问题分析:1.题中最关键的一点是每辆车的x坐标和y坐标可以分开考虑(他们互不影响),不然会变得很复杂,则题目变成两次区间选点问题:使得每辆车在给定的范围内选一个点,任何两辆车不能选同一个点。
2.本题另外一个关键点是贪心法的选择,贪心方法:对所有点的区间,按右端点从小到大排序;每次在一个区间选点的时候,按从左到右选没有被前面区间选过的点。(从这个区间开始选最大程度的防止了以后的区间没有点可以选(因为右端点选的是最小的))
错误的贪心方法:把所有区间按左端排序,然后每次选能选的最左边的。反例:[1,1],[1,3],[2,2];(这种贪心发并不能保证以后的区间有点可以选,某些区间可能更长,取后面的点更合适)
例题链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2075
例题:UVa 11134
11134 - Fabled Rooks
Time limit: 3.000 seconds
We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the following restrictions
- The i-th rook can only be placed within the rectangle given by its left-upper corner (xli, yli) and its right-lower corner (xri, yri), where 1 ≤ i ≤ n, 1 ≤ xli ≤ xri ≤ n, 1 ≤ yli ≤ yri ≤ n.
- No two rooks can attack each other, that is no two rooks can occupy the same column or the same row.
The input consists of several test cases. The first line of each of them contains one integer number, n, the side of the board. n lines follow giving the rectangles where the rooks can be placed as described above. The i-th line among them gives xli, yli, xri, and yri. The input file is terminated with the integer `0' on a line by itself.
Your task is to find such a placing of rooks that the above conditions are satisfied and then output n lines each giving the position of a rook in order in which their rectangles appeared in the input. If there are multiple solutions, any one will do. Output IMPOSSIBLE if there is no such placing of the rooks.
Sample input
8
1 1 2 2
5 7 8 8
2 2 5 5
2 2 5 5
6 3 8 6
6 3 8 5
6 3 8 8
3 6 7 8
8
1 1 2 2
5 7 8 8
2 2 5 5
2 2 5 5
6 3 8 6
6 3 8 5
6 3 8 8
3 6 7 8
0
Output for sample input
1 1
5 8
2 4
4 2
7 3
8 5
6 6
3 7
1 1
5 8
2 4
4 2
7 3
8 5
6 6
3 7
代码实现:
#include "stdio.h"
#include "string.h"
#include "algorithm"
using namespace std; #define N 5010 typedef struct
{
int id;
int l,r;
}Point; int n;
bool mark[N];
Point x[N],y[N],ans[N];
Point ansx[N],ansy[N]; bool cmp(Point a,Point b) { return a.r < b.r; } //按右端点最小的进行排序 bool cmp1(Point a,Point b){ return a.id < b.id;} //按id号还原顺序 bool solve(Point *a,Point *ans)
{
int i,j;
memset(mark,false,sizeof(mark));
for(i=; i<n; i++)
{
for(j=a[i].l; j<=a[i].r; j++)
{
if(mark[j]) continue;
break;
}
if(j>a[i].r) return false;
ans[i].l = j; //用ans[i].l保存答案
ans[i].id = a[i].id;
mark[j] = true;
}
return true;
} int main()
{
int i;
while(~scanf("%d",&n),n!=)
{
for(i=; i<n; i++)
{
scanf("%d %d %d %d",&x[i].l,&y[i].l,&x[i].r,&y[i].r);
x[i].id = y[i].id = i;
}
sort(x,x+n,cmp);
sort(y,y+n,cmp);
if(solve(x,ansx) && solve(y,ansy))
{
sort(ansx,ansx+n,cmp1);
sort(ansy,ansy+n,cmp1);
for(i=; i<n; i++)
printf("%d %d\n",ansx[i].l,ansy[i].l);
}
else
printf("IMPOSSIBLE\n");
}
return ;
}
01_传说中的车(Fabled Rooks UVa 11134 贪心问题)的更多相关文章
- UVa 11134 - Fabled Rooks 优先队列,贪心 难度: 0
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- UVA - 11134 Fabled Rooks[贪心 问题分解]
UVA - 11134 Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n × n board subject to t ...
- uva 11134 - Fabled Rooks(问题转换+优先队列)
题目链接:uva 11134 - Fabled Rooks 题目大意:给出n,表示要在n*n的矩阵上放置n个车,并且保证第i辆车在第i个区间上,每个区间给出左上角和右小角的坐标.另要求任意两个车之间不 ...
- UVA 11134 Fabled Rooks 贪心
题目链接:UVA - 11134 题意描述:在一个n*n(1<=n<=5000)的棋盘上放置n个车,每个车都只能在给定的一个矩形里放置,使其n个车两两不在同一行和同一列,判断并给出解决方案 ...
- 贪心 uvaoj 11134 Fabled Rooks
Problem F: Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the ...
- L - Fabled Rooks(中途相遇法和贪心)
Problem F: Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the ...
- uva11134 - Fabled Rooks(问题分解,贪心法)
这道题非常好,不仅用到了把复杂问题分解为若干个熟悉的简单问题的方法,更是考察了对贪心法的理解和运用是否到位. 首先,如果直接在二维的棋盘上考虑怎么放不好弄,那么注意到x和y无关(因为两个车完全可以在同 ...
- UVA - 11134 Fabled Rooks(传说中的车)(贪心)
题意:在n*n的棋盘上放n个车,使得任意两个车不相互攻击,且第i个车在一个给定的矩形Ri之内,不相互攻击是指不同行不同列,无解输出IMPOSSIBLE,否则分别输出第1,2,……,n个车的坐标. 分析 ...
- UVA 11134 - Fabled Rooks(贪心+优先队列)
We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the following restrict ...
随机推荐
- c# 编程语言 编译器 Roslyn
4 月3日,微软向公众发布了Roslyn编译器项目,该项目采用了Apache开源许可协议.C#的创始人 Anders Hejlsberg在Build大会的第二场主题演讲中将这一令人震惊的消息公之于众. ...
- C#简单文件下载-3行代码
使用WebClient string url = "http://www.mozilla.org/images/feature-back-cnet.png"; WebClient ...
- sencha combobox下拉框不用jsonstore,直接使用字符串数组做数据源
combobox下拉框的store除了可以选择一个jsonstore来加载数据,还可以直接使用符串Array做数据源. { xtype: 'combobox', fieldLabel: 'Label' ...
- .NET初学者推荐课程 asp.net错误代码大全
错误 CS0001 编译器内部错误错误 CS0003 内存溢出错误 CS0004 提升为错误的警告错误 CS0005 编译器选项后应跟正确的参数错误 CS0006 找不到动态链接的元数据文件错误 CS ...
- js定时器调用参数的方法
var userName="Tony"; //根据用户名显示欢迎信息 function ss(_name){ alert("ss,"+_name); } 使用字 ...
- C# 生成XML空元素/空节点自动换行解决方案
使用DataSet可以直接输出XML,并可指定是否带有Schema: ds.WriteXml(XMLFile,XmlWriteMode.WriteSchema ) 不过,这样将不会输出值为Null的字 ...
- DotNetCore跨平台~性能测试~可以放心使用了
使用dotnetCore发布站点后,它的处理请求能力不逊色IIS等大型服务的能力,号称每秒能处理115万个请求,太牛X了也. 先看看它支持的数据库 以下主流数据库都是为支持的 Microsoft SQ ...
- bootstrap 学习片段
1. 只要单击按钮添加了data-toggle="dropdown"属性, 在单击按钮的时候,默认隐藏的下拉列表就会显示出来 <div class="row&quo ...
- 利用php实现:当获取的网址不是特定网址时候跳转到指定地址
这个问题是在百度知道看到的问答,我不懂做,特定去百度了下.然后结合别人获取域名和跳转的知识,综合做了这个功能,以下是实现代码: <?php //获取当前的域名: echo "获取到的域 ...
- Gulp-前端进阶A-2
1.js压缩 注意在根目录的package.json文件里在成功安装uglify后要有 "gulp-uglify": "^1.5.4" 才行 var gulp ...