http://www.spoj.com/problems/QTREE/

这是按边分类的。

调试调到吐,对拍都查不出来,后来改了下造数据的,拍出来了。囧啊啊啊啊啊啊

时间都花在调试上了,打hld只用了半小时啊囧。

第一次打边分类真没注意一个地方。

就是当fx==fy后,没有判断x==y,然后这是边分类,获得的是父亲的下标,果断错。。

囧,一定要记住这个错误。

#include <cstring>
#include <cstdio>
#include <iostream>
using namespace std;
#define lc x<<1
#define rc x<<1|1
#define lson l, m, lc
#define rson m+1, r, rc
#define MID (l+r)>>1
#define read(x) x=getint()
#define dbg(x) cout << #x << "=" << x << endl
inline const int max(const int& a, const int& b) { return a>b?a:b; }
inline int getint() { char c; int ret=0, k=1; for(c=getchar(); c<'0' || c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0' && c<='9'; c=getchar()) ret=ret*10+c-'0'; return k*ret; } const int N=50010, oo=~0u>>1;
struct Ed { int u, v, w; }e[N];
int ihead[N], inext[N<<1], to[N<<1], cnt;
int fa[N], sz[N], son[N], top[N], dep[N], id[N], mx[N*5], num[N], tot, L, R, key, n; inline void pushup(const int &x) { mx[x]=max(mx[lc], mx[rc]); }
void build(const int &l, const int &r, const int &x) {
if(l==r) { mx[x]=num[l]; return; }
int m=MID;
build(lson); build(rson);
pushup(x);
}
void update(const int &l, const int &r, const int &x) {
if(l==r) { mx[x]=key; return; }
int m=MID;
if(L<=m) update(lson); if(m<R) update(rson); pushup(x);
}
int getmax(const int &l, const int &r, const int &x) {
if(L<=l && r<=R) return mx[x];
int m=MID, ret=oo+1;
if(L<=m) ret=max(ret, getmax(lson)); if(m<R) ret=max(ret, getmax(rson)); return ret;
}
void dfs1(const int &u) {
sz[u]=1; int v;
for(int i=ihead[u]; i; i=inext[i]) if(fa[u]!=(v=to[i])) {
fa[v]=u; dep[v]=dep[u]+1;
dfs1(v);
sz[u]+=sz[v];
if(sz[v]>sz[son[u]]) son[u]=v;
}
}
void dfs2(const int &u, const int &tp) {
id[u]=++tot; top[u]=tp;
if(son[u]) dfs2(son[u], tp);
for(int i=ihead[u]; i; i=inext[i]) if(fa[u]!=to[i] && to[i]!=son[u]) dfs2(to[i], to[i]);
}
inline int getmax(int x, int y) {
int fx=top[x], fy=top[y], ret=oo+1;
while(fx!=fy) {
if(dep[fx]<dep[fy]) { swap(x, y); swap(fx, fy); }
L=id[fx]; R=id[x];
ret=max(ret, getmax(2, n, 1));
x=fa[fx]; fx=top[x];
}
if(dep[x]>dep[y]) swap(x, y);
if(x!=y) L=id[x]+1; R=id[y]; //这里,如果不特判的话,L会>R,然后线段树那里果断死循环
return max(ret, getmax(2, n, 1));
}
inline void add(const int &u, const int &v) {
inext[++cnt]=ihead[u]; ihead[u]=cnt; to[cnt]=v;
inext[++cnt]=ihead[v]; ihead[v]=cnt; to[cnt]=u;
}
int main() {
int c=getint(), a, b; char ch;
while(c--) {
read(n);
tot=cnt=0;
memset(ihead, 0, sizeof(int)*(n+10));
memset(fa, 0, sizeof(int)*(n+10));
memset(son, 0, sizeof(int)*(n+10));
for(int i=1; i<n; ++i) {
read(e[i].u); read(e[i].v); read(e[i].w);
add(e[i].u, e[i].v);
}
dfs1(1); dfs2(1, 1);
for(int i=1; i<n; ++i) {
if(dep[e[i].u]>dep[e[i].v]) swap(e[i].u, e[i].v);
num[id[e[i].v]]=e[i].w;
}
build(2, n, 1);
for(ch=getchar(); ch<'A' || ch>'Z'; ch=getchar());
while(ch!='D') {
read(a); read(b);
if(ch=='C') { key=b; L=R=id[e[a].v]; update(2, n, 1); }
else printf("%d\n", getmax(a, b));
for(ch=getchar(); ch<'A' || ch>'Z'; ch=getchar());
}
}
return 0;
}

You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.

We will ask you to perfrom some instructions of the following form:

  • CHANGE i ti : change the cost of the i-th edge to ti
    or
  • QUERY a b : ask for the maximum edge cost on the path from node a to node b

Input

The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.

For each test case:

  • In the first line there is an integer N (N <= 10000),
  • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
  • The next lines contain instructions "CHANGE i ti" or "QUERY a b",
  • The end of each test case is signified by the string "DONE".

There is one blank line between successive tests.

Output

For each "QUERY" operation, write one integer representing its result.

Example

Input:
1 3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE Output:
1
3

【SPOJ】375. Query on a tree(树链剖分)的更多相关文章

  1. spoj 375 Query on a tree (树链剖分)

    Query on a tree You are given a tree (an acyclic undirected connected graph) with N nodes, and edges ...

  2. SPOJ 375 Query on a tree 树链剖分模板

    第一次写树剖~ #include<iostream> #include<cstring> #include<cstdio> #define L(u) u<&l ...

  3. SPOJ QTREE Query on a tree 树链剖分+线段树

    题目链接:http://www.spoj.com/problems/QTREE/en/ QTREE - Query on a tree #tree You are given a tree (an a ...

  4. spoj QTREE - Query on a tree(树链剖分+线段树单点更新,区间查询)

    传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...

  5. SPOJ QTREE Query on a tree ——树链剖分 线段树

    [题目分析] 垃圾vjudge又挂了. 树链剖分裸题. 垃圾spoj,交了好几次,基本没改动却过了. [代码](自带常数,是别人的2倍左右) #include <cstdio> #incl ...

  6. SPOJ QTREE Query on a tree --树链剖分

    题意:给一棵树,每次更新某条边或者查询u->v路径上的边权最大值. 解法:做过上一题,这题就没太大问题了,以终点的标号作为边的标号,因为dfs只能给点分配位置,而一棵树每条树边的终点只有一个. ...

  7. spoj 375 QTREE - Query on a tree 树链剖分

    题目链接 给一棵树, 每条边有权值, 两种操作, 一种是将一条边的权值改变, 一种是询问u到v路径上最大的边的权值. 树链剖分模板. #include <iostream> #includ ...

  8. SPOJ Query on a tree 树链剖分 水题

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

  9. Query on a tree——树链剖分整理

    树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...

  10. Bzoj 2588 Spoj 10628. Count on a tree(树链剖分LCA+主席树)

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MB Description 给定一棵N个节点的树,每个点 ...

随机推荐

  1. 浅谈B树

    B树即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如:    ...

  2. Ubuntu上安装gtk2.0不能安装的问题,“下列的软件包有不能满足的依赖关系”

    zez@localhoss:~$ sudo apt-get install libgtk2.0-dev正在读取软件包列表... 完成正在分析软件包的依赖关系树       正在读取状态信息... 完成 ...

  3. MongoDB概述&语法

    Nosql DB 这是一个非关系型数据库. 通常我们的数据库有三类:  关系型数据库(RDBMS),联机分析处理数据库(OLAP),和菲关系型数据库(NoSql). MongoDB属于第三种,而且是一 ...

  4. CF#310 d2

    A:|c[1]-c[0]| B:A+-(oc)A[0]==0..n-1 C: #include <cstdio> int n,m,i,j,k,p; int ll,ca,cb,cc; int ...

  5. Linux--YUM 安装 nginx php mysql

    Linux--YUM 安装 nginx php mysql (2011-11-13 11:27:14) 转载▼ 标签: 杂谈 分类: Linux 1.先新建一个 repo # vi /etc/yum. ...

  6. Longest Consecutive Sequence

    Given an unsorted array of integers, find the length of the longest consecutive elements sequence. C ...

  7. Product of Array Exclude Itself

    Given an integers array A. Define B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], calculate B WI ...

  8. 【leetcode】String to Integer (atoi)

    String to Integer (atoi) Implement atoi to convert a string to an integer. Hint: Carefully consider ...

  9. 41.把数组排成最小的数[Sort array to smallest value]

    [题目] 输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个.例如输入数组{3,32,  321},则输出这两个能排成的最小数字321323.请给出解决问题的算法,并证明该 ...

  10. codeforces A. IQ Test 解题报告

    题目链接:http://codeforces.com/problemset/problem/328/A 一开始单纯地直接判断给出的序列是等差还是等比,连这一句“You should also prin ...