Ant


Time Limit: 1 Second      Memory Limit: 32768 KB

There is an ant named Alice. Alice likes going hiking very much. Today, she wants to climb a cuboid. The length of cuboid's longest edge is n, and the other edges are all positive integers. Alice's starting point is a vertex of this cuboid, and she wants to arrive at the opposite vertex. The opposite vertex means the vertex which has no common planes or edges with the starting point. Just like the picture below:

Alice is very clever, she always walks on the shortest path. But she can only walk on the surface of the cuboid. Now, Alice only knows the length of cuboid's longest edge is n, and doesn't know the length of other edges. Suppose the L is the length of shortest path of a cuboid. Alice wants to compute the sum of L2 for every possible cuboid.

Input

The first line of input contains an integer T(T ≤ 100) . is the number of the cases. In the following T lines, there are a positive integer n(1≤n≤1014) in each line. n is the longest edge of the cuboid.

Output

For each test case, output the sum of L2 for every possible cuboid in a line. L is the length of shortest path of a cuboid. It may be very large, so you must output the answer modulo 1000000007.

Sample Input

2
3
4

Sample Output

160
440

Hint

(3,2,1) and (3,1,2) are regrad as the same cuboids.


Author: MU, Tongzhou

题意:就是说给出长方体的长(最长边),问一个蚂蚁从左下角爬到右后上角的所有可能的最短距离的和

解法:

1、听说有人用矩阵乘法过了,蛮厉害的,至今不知怎么推递推式

2、只能傻傻的推公示

显然一个蚂蚁有两种方式到达右后上角

设长为n,令两边为a,b,路程为c

c^2 = n^2+(a+b)^2 = n^2+a^2+b^2+2*a*b

或 c^2 = (n+a)^2+b^2 = n^2+a^2+b^2+2*a*n

显然是上面那个比较小

然后现有如下公式

A = 1+2+3+...+n = (n+1)*n/2

B = 1^2+2^2+3^2+.....+n^2 = n(n+1)(2n+1)/6

C = 1^3+2^3+3^3+......+n^3 = (n*(n+1)/2)^2

然后因为(n,a,b)跟(n,b,a)一样

不妨令a<b

那么(a,b)共有n*(n-1)/2种方式

所以   那个  n^2   总共的和为  n^2*n*(n-1)/2 = n^2*A

观察每种a^2、b^2被加的次数,发现

a^2 的总共的和为   1^2*n+2^2*(n-1)+......+n^2*1  =  sigma(1<=i<=n) i^2*(n-i+1) = sigma(1<=i<=n) (n+1)*i^2-i^3

=   (n+1)*(1^2+2^2+3^2+.....+n^2)-(1^3+2^3+3^3+....+n^3)

= (n+1)*n(n+1)(2n+1)/6- (n*(n+1)/2)^2 = (n+1)*B-C

b^2 的总共的和为    1^2*1+2^2*2+.....+n^2*n =  (n*(n+1)/2)^2 = C

所以a^2+b^2= (n+1)*n(n+1)(2n+1)/6 = (n+1)*B

再观察2*a*b

就是 2*sigma(1<=i<=n) i*(i+(i+1)+.....+n)

= 2*sigma(1<=i<=n) i*(n+i)*(n-i+1)/2

= sigma(1<=i<=n)  i*(n^2-i^2+n+1)

= sigma(1<=i<=n)  n^2*i-i^3+n*i+i

= n^2*A-C+n*A+A

三者相加即可

(公式有可能打错,但思路没错,具体请看代码)

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <vector>
#include <deque>
#include <queue>
using namespace std;
typedef long long LL;
typedef double DB;
#define Rep(i, n) for(int i = (0); i < (n); i++)
#define Repn(i, n) for(int i = (n)-1; i >= 0; i--)
#define For(i, s, t) for(int i = (s); i <= (t); i++)
#define Ford(i, t, s) for(int i = (t); i >= (s); i--)
#define rep(i, s, t) for(int i = (s); i < (t); i++)
#define repn(i, s, t) for(int i = (s)-1; i >= (t); i--)
#define MIT (2147483647)
#define MLL (1000000000000000000LL)
#define INF (1000000001)
#define mk make_pair
#define ft first
#define sd second
#define clr(x, y) (memset(x, y, sizeof(x)))
#define sqr(x) ((x)*(x))
#define sz(x) ((int) (x).size())
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
inline void SetIO(string Name) {
string Input = Name+".in", Output = Name+".out";
freopen(Input.c_str(), "r", stdin);
freopen(Output.c_str(), "w", stdout);
} const LL Mod = 1000000007LL;
const int Max = ;
LL n; inline LL GetLL() {
LL Ret = ;
char Ch = ' ';
while(!(Ch >= '' && Ch <= '')) Ch = getchar();
while(Ch >= '' && Ch <= '') {
Ret = Ret*10LL+Ch-'';
Ch = getchar();
}
return Ret;
} inline void Solve(); inline void Input() {
int TestNumber;
scanf("%d", &TestNumber);
while(TestNumber--) {
n = GetLL();
Solve();
}
} inline void Work(LL &m, bool &F2, bool &F3) {
if(!F2 && m% == ) F2 = , m /= ;
if(!F3 && m% == ) F3 = , m /= ;
m %= Mod;
} inline void Solve() {
LL X, Y, Z;
LL A, B, C;
LL m;
bool F2 = , F3 = ; // Get X
F2 = , F3 = , X = ;
m = n;
Work(m, F2, F3);
X = (X*m)%Mod; m = (n+);
Work(m, F2, F3);
X = (X*m)%Mod; m = (*n+);
Work(m, F2, F3);
X = (X*m)%Mod; // Get Y
F2 = , F3 = , Y = ;
m = n;
Work(m, F2, F3);
Y = (Y*m)%Mod; m = n+;
Work(m, F2, F3);
Y = (Y*m)%Mod; Y = (Y*Y)%Mod; // Get Z
F2 = , F3 = , Z = ;
m = n;
Work(m, F2, F3);
Z = (Z*m)%Mod; m = n+;
Work(m, F2, F3);
Z = (Z*m)%Mod; m = n%Mod;
// Get A
A = Z;
A = (A*m)%Mod;
A = (A*m)%Mod; // Get B
B = X;
B = (B*(m+))%Mod; // Get C
C = (((m*m)%Mod)*Z)%Mod;
C = (C-Y+Mod)%Mod;
C = (C+X)%Mod;
C = (C+((m*Z)%Mod))%Mod; LL Ans = (A+B+C)%Mod;
cout<<Ans<<endl;
} int main() {
Input();
//Solve();
return ;
}

ZOJ 3903 Ant ZOJ Monthly, October 2015 - A的更多相关文章

  1. ZOJ 3913 Bob wants to pour water ZOJ Monthly, October 2015 - H

    Bob wants to pour water Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge There i ...

  2. ZOJ 3911 Prime Query ZOJ Monthly, October 2015 - I

    Prime Query Time Limit: 1 Second      Memory Limit: 196608 KB You are given a simple task. Given a s ...

  3. ZOJ 3910 Market ZOJ Monthly, October 2015 - H

    Market Time Limit: 2 Seconds      Memory Limit: 65536 KB There's a fruit market in Byteland. The sal ...

  4. ZOJ 3908 Number Game ZOJ Monthly, October 2015 - F

    Number Game Time Limit: 2 Seconds      Memory Limit: 65536 KB The bored Bob is playing a number game ...

  5. ZOJ 3905 Cake ZOJ Monthly, October 2015 - C

    Cake Time Limit: 4 Seconds      Memory Limit: 65536 KB Alice and Bob like eating cake very much. One ...

  6. 143 - ZOJ Monthly, October 2015 I Prime Query 线段树

    Prime Query Time Limit: 1 Second      Memory Limit: 196608 KB You are given a simple task. Given a s ...

  7. ZOJ 3903 Ant(数学,推公示+乘法逆元)

    Ant Time Limit: 1 Second      Memory Limit: 32768 KB There is an ant named Alice. Alice likes going ...

  8. ZOJ 3903 Ant(公式推导)

    这个公式推导过程是看的这位大牛的http://blog.csdn.net/bigbigship/article/details/49123643 扩展欧几里德求模的逆元方法: #include < ...

  9. 思维+multiset ZOJ Monthly, July 2015 - H Twelves Monkeys

    题目传送门 /* 题意:n个时刻点,m次时光穿梭,告诉的起点和终点,q次询问,每次询问t时刻t之前有多少时刻点是可以通过两种不同的路径到达 思维:对于当前p时间,从现在到未来穿越到过去的是有效的值,排 ...

随机推荐

  1. UNITY3D与iOS交互解决方案

    原地址:http://bbs.18183.com/thread-456979-1-1.html 本帖最后由 啊,将进酒 于 2014-2-27 11:17 编辑 “授人以鱼,不如授人以渔”,以UNIT ...

  2. B,B+,B-,B*树

    B树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B ...

  3. Centos下安装mysql 总结

    一.MySQL安装 Centos下安装mysql 请点开:http://www.centoscn.com/CentosServer/sql/2013/0817/1285.html 二.MySQL的几个 ...

  4. django revision

    由于多次涉及到了这个东东,又不是很理解机制,决定深入研究下. what django-revision到底啥玩意?readthedocs上只有一句话概括:django-reversion can be ...

  5. tar: Removing leading `/’ from member names

    tar: Removing leading `/’ from member names+2 分类:Web服务器 标签:tar 3,910人浏览   这并不是一个错误,而是一个警告,原因很简单,就是你在 ...

  6. i686和x86_64的区别

    找回TCL隐藏分区(转载) 用Wubi安装 Ubuntu 出现(Initranfs)问题的解决方案 i686和x86_64的区别 2009-04-11 08:19:31|  分类: 电脑问题 |  标 ...

  7. shell中常用的命令方法

    <1>Linux Shell 脚本中字符串的连接方法 [root@localhost company]# var1=/etc/[root@localhost company]# var3= ...

  8. 【SpringMVC】SpringMVC系列1之HelloWorld

    SpringMVC之HelloWorld 概述 SpringMVC 是基于 MVC 设计理念的优秀Web 框架,是目前最主流的 MVC 框架之一.Spring3.0 后全面超越 Struts2,成为最 ...

  9. 写了一个字符串的二维表: TSta

    STA 单元 (用到 System.SysUtils.TStringHelper): --------------------------------------------------------- ...

  10. codeforces 489B. BerSU Ball 解题报告

    题目链接:http://codeforces.com/problemset/problem/489/B 题目意思:给出 n 个 boys 的 skills 和 m 个 girls 的 skills,要 ...