将选取的$A$看成左括号,$B$看成右括号,那么答案是一个合法的括号序列。

那么只要重复取出$k$对价值最小的左右括号,保证每时每刻都是一个合法的括号序列即可。

将$($看成$1$,$)$看成$-1$,设$s[]$为前缀和。

如果当前取出的是$()$,那么对前缀和的影响为$[A,B-1]$区间加$1$。

如果当前取出的是$)($,那么对前缀和的影响为$[B,A-1]$区间减$1$,所以这种情况需要满足区间$s$的最小值不为$0$。

考虑用线段树维护这个序列,线段树上每个节点维护以下信息:

va:$A\leq B$情况的最优解。

vb:$A>B$情况的最优解,且满足$[A,B-1]$的区间$s$最小值大于当前区间的$s$最小值。

vc:$A>B$情况的最优解。

aa:区间内代价最小的$A$。

ab:区间内代价最小的$B$。

ba:区间内代价最小的$A$,满足$[st,A-1]$的区间$s$最小值大于区间$s$最小值。

bb:区间内代价最小的$B$,满足$[B,en]$的区间$s$最小值大于区间$s$最小值。

vm:区间$s$最小值。

tag:区间增量标记。

为了方便维护,可以考虑增加第$0$项,$A[0]=B[0]=inf$。

那么$[0,n]$区间的$vb$必定满足区间最小值不为$0$,然后贪心选取$k$次即可求出最优解。

时间复杂度$O(k\log n)$。

#include<cstdio>
const int N=500010,M=1050000,inf=1000000010;
long long ans;
int n,k,i,j,A[N],B[N],aa[M],ab[M],ba[M],bb[M],vm[M],tag[M];
struct P{
int x,y;
P(){}
P(int _x,int _y){x=_x,y=_y;}
P operator+(const P&b){return A[x]+B[y]<A[b.x]+B[b.y]?*this:b;}
}va[M],vb[M],vc[M],t;
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline void add1(int x,int p){vm[x]+=p;tag[x]+=p;}
inline void pb(int x){if(tag[x])add1(x<<1,tag[x]),add1(x<<1|1,tag[x]),tag[x]=0;}
inline void up(int x){
int l=x<<1,r=l|1;
va[x]=va[l]+va[r]+P(aa[l],ab[r]);
vc[x]=vc[l]+vc[r]+P(aa[r],ab[l]);
vb[x]=vb[l]+vb[r];
aa[x]=A[aa[l]]<A[aa[r]]?aa[l]:aa[r];
ab[x]=B[ab[l]]<B[ab[r]]?ab[l]:ab[r];
if(vm[l]<vm[r]){
vb[x]=vb[x]+vc[r]+P(aa[r],bb[l]);
ba[x]=ba[l];
bb[x]=B[ab[r]]<B[bb[l]]?ab[r]:bb[l];
vm[x]=vm[l];
}
if(vm[l]>vm[r]){
vb[x]=vb[x]+vc[l]+P(ba[r],ab[l]);
ba[x]=A[aa[l]]<A[ba[r]]?aa[l]:ba[r];
bb[x]=bb[r];
vm[x]=vm[r];
}
if(vm[l]==vm[r]){
vb[x]=vb[x]+P(ba[r],bb[l]);
ba[x]=ba[l];
bb[x]=bb[r];
vm[x]=vm[l];
}
}
void build(int x,int a,int b){
if(a==b){
va[x]=vc[x]=P(a,a),vb[x]=P(0,0);
aa[x]=ab[x]=ba[x]=a;
return;
}
int mid=(a+b)>>1;
build(x<<1,a,mid),build(x<<1|1,mid+1,b),up(x);
}
void add(int x,int a,int b,int c,int d,int p){
if(c<=a&&b<=d){add1(x,p);return;}
pb(x);
int mid=(a+b)>>1;
if(c<=mid)add(x<<1,a,mid,c,d,p);
if(d>mid)add(x<<1|1,mid+1,b,c,d,p);
up(x);
}
void change(int x,int a,int b,int c){
if(a==b)return;
pb(x);
int mid=(a+b)>>1;
if(c<=mid)change(x<<1,a,mid,c);else change(x<<1|1,mid+1,b,c);
up(x);
}
int main(){
read(n),read(k);
for(i=1;i<=n;i++)read(A[i]);
for(i=1;i<=n;i++)read(B[i]);
A[0]=B[0]=inf;
build(1,0,n);
while(k--){
t=va[1]+vb[1],i=t.x,j=t.y,ans+=A[i]+B[j];
if(i<j)add(1,0,n,i,j-1,1);
if(i>j)add(1,0,n,j,i-1,-1);
A[i]=inf,change(1,0,n,i);
B[j]=inf,change(1,0,n,j);
}
return printf("%lld",ans),0;
}

  

BZOJ3838 : [Pa2013]Raper的更多相关文章

  1. 题解 洛谷 P4694 【[PA2013]Raper】

    首先考虑题目的性质,不难发现光盘的花费是一个凸函数.当生产 \(0\) 张光盘时,其花费为 \(0\),随着光盘生产数的增加,最优情况肯定是先选择工厂便宜的时刻,所以花费会增长越来越快,因此其为一个下 ...

  2. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  3. 【BZOJ3733】[Pa2013]Iloczyn (搜索)

    [BZOJ3733][Pa2013]Iloczyn (搜索) 题面 BZOJ 题解 把约数筛出来之后,直接爆搜,再随便剪枝就过了. 最近一句话题解倾向比较严重 #include<iostream ...

  4. 【BZOJ3837】[Pa2013]Filary 随机化神题

    [BZOJ3837][Pa2013]Filary Description 给定n个正整数,从中挑出k个数,满足:存在某一个m(m>=2),使得这k个数模m的余数相等. 求出k的最大值,并求出此时 ...

  5. 【BZOJ3837】[PA2013]Filary

    [BZOJ3837][PA2013]Filary 题面 darkbzoj 题解 考虑到模数为\(2\)时答案至少为\(\frac n2\),这是我们答案的下界. 那么我们对于任意的一个数,它们答案集合 ...

  6. 【BZOJ】3737: [Pa2013]Euler

    题意: 求满足\(phi(a)=n\)的\(a\)的个数.(\(n \le 10^{10}\)) 分析 这种题一开始就感觉是搜索= = 题解 首先容易得到 \[\phi(n) = \prod_{i} ...

  7. BZOJ 3736: [Pa2013]Karty

    Description 一个0/1矩阵,求能覆盖所有 \(1\) ,同时不覆盖所有 \(0\) 的矩阵,使这个面积最大. Sol DP/悬线法. 首先,所求的矩阵一定可以覆盖所有贴边的悬线. 用悬线法 ...

  8. BZOJ3733 : [Pa2013]Iloczyn

    首先将$n$的约数从小到大排序,设$dfs(x,y,z)$表示当前可以选第$x$个到第$m$个约数,还要选$y$个,之前选的乘积为$z$是否可能. 爆搜的时候,如果从$x$开始最小的$y$个相乘也超过 ...

  9. BZOJ3839 : [Pa2013]Działka

    对于每个询问,首先可以通过扫描线+线段树求出四个方向的第一个点,询问范围等价于框住这些点的最小矩形. 对于一个点$i$,预处理出: $A[i][j]$:$i$往左下角按凸壳走到$j$时,凸壳上相邻两点 ...

随机推荐

  1. [codeforces 241]A. Old Peykan

    [codeforces 241]A. Old Peykan 试题描述 There are n cities in the country where the Old Peykan lives. The ...

  2. 07 day 2

    又是惨烈的一天 第一题 多重背包.二进制拆分即可. #include <stdio.h> #define max(a,b) ((a)>(b)?(a):(b)) int n,m,i,j ...

  3. jQuery 效果函数

    jQuery 效果函数 方法 描述 animate() 对被选元素应用“自定义”的动画 clearQueue() 对被选元素移除所有排队的函数(仍未运行的) delay() 对被选元素的所有排队函数( ...

  4. makefile文件编写

    文件转载自:http://www.cppblog.com/lapcca/archive/2010/11/26/134714.html 下面这篇文章讲的很清楚,基本的用法也很简单.   一.Makefi ...

  5. CodeForces - 427A (警察和罪犯 思维题)

    Police Recruits Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Sub ...

  6. July 16th, Week 29th Saturday, 2016

    A long road tests a horse's strength and a long task proves a man's heart. 路遥知马力,日久见人心. Do you have ...

  7. mac OS X 安装svn

    因为从10.5版本开始适用Mac OS,SVN一直都是默认安装的软件. 后来发现一个简单的办法. 如果你有安装XCode,只需要在code > Preferences > download ...

  8. 元素查找(codevs 1230)

    1230 元素查找  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 给出n个正整数,然后有m个询问,每 ...

  9. C++ STL算法系列4---unique , unique_copy函数

     一.unique函数 类属性算法unique的作用是从输入序列中“删除”所有相邻的重复元素. 该算法删除相邻的重复元素,然后重新排列输入范围内的元素,并且返回一个迭代器(容器的长度没变,只是元素顺序 ...

  10. Fresco 源码分析(二) Fresco客户端与服务端交互(2) Fresco.initializeDrawee()分析 续

    4.2.1.2 Fresco.initializeDrawee()的过程 续 继续上篇博客的分析Fresco.initializeDrawee() sDraweeControllerBuilderSu ...