<更新日期03-31-2016> 复利计算5.0 <已改进>
作业要求:
1.客户说:帮我开发一个复利计算软件。
完成复利公式计算程序,并成功PUSH到github上。
客户提出:
2.如果按照单利计算,本息又是多少呢?
3.假如30年之后要筹措到300万元的养老金,平均的年回报率是3%,那么,现在必须投入的本金是多少呢?
完成23功能,并成功PUSH到github上。
客户又想:
4.利率这么低,复利计算收益都这么厉害了,如果拿100万元去买年报酬率10%的股票,若一切顺利,过多长时间,100万元就变成200万元呢?
5.如果我希望在十年内将100万元变成200万元,应该找到报酬率在多少的投资工具来帮助我达成目标?如果想在5年后本金翻倍,报酬率就应至少为多少才行呢?
6.如果每年都将积蓄的3万元进行投资,每年都能获得3%的回报,然后将这些本利之和连同年金再投入新一轮的投资,那么,30年后资产总值将变为多少?如果换成每月定投3000呢?
客户又想:
7. 你写的程序能让客户随意操作吗?误输入数据、不小心做了非常规的操作程序是什么反应?
8. 如果向银行贷款10万元,年利率6.5%,期限为10年,那么每月等额本息还款多少?(算复利条件下等额还款金额)
客户又想:
4.0............
12. 即要追求利益,又要面对不可预知的金融投资风险, “不能把鸡蛋放在同一个篮子里”,所以有必要进行组合投资。
通过上述计算与对比,可以帮助客户进行投资决策。
客户:那么能否帮我记录下一笔一笔不同类型的投资,并动态显示资金现值呢?
提问:动态显示资金现值是以什么形式进行呈现?
客户特么又想:
5.0 单元测试-----------------------------
仅对复利模块进行了测试,其他模块以此类推。
以下为测试新增代码:
public static double CompoundingCalculation(double money,double rate,int years)
{
int year = years;
double Money = money,Rate = rate;
double sum1 = 0;
for (int i = 1; i <= year ; i++)
{
sum1 = Money*Math.pow(1.0 + Rate, year);
}
return sum1;
}
Ps:为了测试数据,由于此前写的方法是不含参数的方法所以在进行测试的时候要构造一个带参数的同名方法进行传参测试。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABVUAAAL/CAYAAABmuie5AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7P0JlBRVujd693ffe9d977r3e9/3fqfP6eGcPm3banu6cWi17WpbcShBBUucKQUBC5BJZVBwHgBFUHBCkUkEBBmKGWQQQXEAVJwnxHlGnFCRWZ8vnh2xI3dEPhGxIzMys4Z/rvVbmRl7iB2Ru6oy/7Uz8xed5zxPAAAAAAAAAAAAAOW07vTTGx0ed6vrxhBCVQAAAAAAAAAAACg7KbRs6HjcCFUBAAAAAAAAAACgIqTQsqHjcSNUBQAAAAAAAAAAgIqQQsuGjseNUBUAAAAAAAAAAABSO/DAA2NJbcKk0LKh43Enhqrdp6+i+aMvoEPO7E6/2+9o+t3vquiAo9rRCQNvp/OmPC62AQAAAIBkNec5TzZPuJHaC2VRCmkjyaqfSijF2Bvz+SjcEmp1QnM8bll4DjTPOQEAAJCdZhuqdpuznh4bcxY9P/xgan34EXTgPqdRi33P8f3ht8fSn49pT22HTclrCwAAAOXihSLnTRDKGrf2fU9OPC5V58DuVCOUZU3e1wQ6OvTf+KOHmuXxCgltsgl6yhemNZTzlqRcAZp7PoLHbjqs7xKxXWk0rVA16tzazq3gHEDgDAAAEEf6m2vSdcLtJFJoWSh9sd1eKB53ZKi6eMJF9NFtf6QTDz4mEKaa/mufdvTHv7ShE668I689AAAAlENTC1W949FPyGKPq5zHnr8vHeCEA5ua806mVmOD26KUJ1R1A8w0oWV2Gs55S1KR8zq0u3Mu7I87nUo+7pWh5lYR86IU8woAAKCp8p+vR9B1wu0kUmhZDH2Jup8FHrcYqt46fQJ9c/cfqOq/ThDDVNOf/3Am/X6/Y+i8yfgoAAAAgPJrYqEqh0xeqKECjrjjGnsjHVayQCokvK+MwrBCQpyKhH+FakDnLUlFzitC1UwhVAUAACifuMC00qEqC1+kOsXgceeFqvy2/2/vPYDu7t+ali1ZS99/t83bvXzZtPFDGtj/Njqm6xC/DwAAACgXKVT1tjlPYly5t15HhQbB7dHty0mNKSZUzT8WN0TS4zbDJF23Rr89OKad7fmxe5t2/LkM9uuOI9xv+Djzjzt6H9LboXX/+f04VAgarB8M5bx9OY9LsG95jpTnvGlRj2N5z6sSPo95Y/UkhaqJ/chzPnF8hjTHLZ/38Pb4x66U7ELV6J/3pDnh3w8/Lnm/p+THxWc7PwAAABow/hsmbWe6LK6OSQots6AvUlmxeNx5oeqAWcto67370V8PaUWnntiXOp5zHdWdPzjShefdSJ3bX09/Pf0ivw8AAAAoFy/AMF7Ut+/b3QhpvHL9ol0KcbwX+LlAJqZ9GakAIzJUDQdl+cFZTd9QGOKU5/Wnzkd+INYqEIKE+g6drzhJ5zIY2uQfQ36d/PvJj5fbb3i84X70uQjU8441Nyav/8A2t/+oYKn0580R+ziW97zm/4xJbT3Sz2NkWbif/OMy53zk+EJSHbc03tDjmnzeSicxVI2dJ8lzQt132gf24R1/bv4nPC5p5gcAAEADxn8Tpe1Ml8XVMUmhZbHCF6lOMXjceaHquAdvpS33/IXmzlmsVqHaXLZt206HtkOoCgAAUH7eC/LI8NGhXsTr1WJuffMFv7uqLWY1WaB9+agAI+q4wmNKCOzcMCR8DBbnjon7igjCkoT6CoY2hYV/efIeLzlcs9k3C84POQAS51DZzlvS41jO8+qOJW8eRh276lM6Jxb9JMz5qMc9LN1xu+NqqL8/3LE4xxMQHHvcz3vSnFD3hWMJnIPYxyXl/AAAAChQ/t/DIKlNWnH96DLbfUmhZTH0Jep+FnjceaFq/1nL6bt79qfqqhOofbsrqVuHm6lH59si8UrVC865jg6t6e73AQAAAOUiBwXui39TLghQAYAfFOSHJEntk+S1TQotI6h+xLbSMXvbeH9CQKT6Cm9PDKWYsK+UAUjcuQyOq/DwL24fUeFaoJ+4cxEI/uT5lh+slfG8JT6OZTyv3liCbXLyxhgVqlr1Ez/niwlV4467If/+CI4tJHGe5J+LpPs+6WeExx6um3Z+AAAAFEj6O2OS2qQV10/afUihZaH0xXZ7oXjceaFq79mP09f3HkDj+h9Ps6Y/Qlu3/uDtVr588vEWmjBuBlXVDvT7AAAAgHIJhxpukBIIMcIrxcxwQd02Qx2L9mWiAgwpUIkLR8zQIikMietHE+vIIV2+5HMZHJfcb3ywY/N4uXXCxxnoJ+5cSIFRUqhazvOW+DiW8bzazClT4Nwa0vTj1Q3PeXF8gtTHbY5N3W44vz8aRqjqkR4XizEAAAA0FupvXAypTRQptGzoeNx5oSobNf0+9e3/xx3cWn3D/9//3JuOPuRyOubQQcrRh15O/zy4Px38x/PpL384i/6w/wl01l2LA30AAABAOYSCE+HFff4qQi8cOM/7siEzILNsXw56jOHtscGJpo4jd17kMMQ9d3EhX9S+VH9J58TiXAbHJQeW4bEH7ls9XnK4Fuw3+lwE+7MLVct73pIex3Ke1+Q5FSDsx5WyH6b6MscjjS9f+uP22jjnU5WZ59WyfamofQnzzpV8TmPnhL4vHEu4XkDgcSngcQUAAGgGpNCyoeNxi6EqWza+C7094k902H6tqMW+59KRf+5BRx8yUIWq/2jRl/66fyf6r33a0R/2O4FOGDiKOtdvyOsDAAAASisvsAgHK/5qqVAQ4IUfh50QCl1s25eBDm6C2yNCCWecR5vbQuFOVOjhnr/8c5AcgHhBXV4gxtu9bRbnMjG08fqIDHqsHi/5OML7jjoXwW02oWr5z1v841je8yqOhdvnzWWH2k/4XLgS+3Fux815eXzuNvPxS3/cul7D+/2hzpnxmIrl5viYM2Z9PzyvxPt8POZjKRxz3OOSan4AAAA0E1Jo2dDxuCND1W5z1tOKe9vT2qGH0Z/3q6ID9zmNDtmvAx26f0c6aN/2tO+/n0B/+ns7OuHKO/LaAgAAQGm5wRTLD2T0i3aFAwH1oj4canjhihBA2LUvPRVghIOGUEBh8gMPJVgnHI4EeKGIT+8zZl9a4FwpwfpJ5zJ/XDp09DhjCdcJ37d6vIxj1CGbeE7C5yLv+C1C1YqcN0d47IExlu+85rXV7c12WsK5SupHjdkvF/rJG1/+41fQcTfQ3x9550sz54JxTsJlSXNC368J7ScQkOp6fnn+42I9PwAAAJoJKbRs6HjckaGqduXUh+jJ0W3okDO70+/2O5p+/cuD6YCj2tEJA2+n8yavpk71z4ntAAAAALKmwopAWFY65dxXU4Lz1rjg8bKnzhUCUAAAgMxJoWVDx+NODFUBAAAAGgTvrcThVWElUc59NSU4b42Mu3I1/BEGIEOoCgAAUBpSaNnQ8bgRqgIAAAAANEcJHz8AQQhVAQAAwIRQFQAAAACgGTE/0xOriu0hVAUAAAATQlUAAAAAAAAAAACAFFSoesbd8wgAAAAAAAAAAAAAkh13+a30ix+37yAAAAAAAAAAAAAASHbt2OkIVQEAAAAAAAAAAABsIVQFAAAAAAAAAAAASKGAUPU1GnHkL6hugVQGAAAA5bGA6n5RR/PFMjvz646kEa/KZQAAAAAAABCtwJWq/EIu4YXYgjo6csRredt+UbcguK0ipBei8ceUe+Hphsq/+EVYcS9si/LqrXSkHjuf47yxGY68leaPODK0vY7q6sz7HqfuK9L+yiLqPIeYY+TzEHe/0kLjecV5HPJ+Rrzt7j8tnDmp6xs/T1HtGoTwzz3PxyOd+XWkXXDToI9Ni/sZ07/fkn4Ok35/lhrPRf93cdzPmvR7krfxtU39SnOPLW5OzZd+94U0uDkZMb/qFoQeF//3Tf5jrP8xilAVAAAAAACgMImhqlWwpRmBkflCzb/NLwQjQlUOU9wy4QW+0+8I54VvZi9snXG4fUUFA67calwj3FLjC78I5W3BMCH2eLzggV/MZ3ZMOlgdETzHuYAuX1yZOubQY5U7Jq/cOKbcC/QSBhD+4yaUsVBoaTMWfUyRwYpXlskxvfqaG2j759CcN7l5lXtcjHmXNGeNxyr3OOm5F56vbn/65zXTx8wfp943H597bHXO7wF3vHo8EceSJzj+4Dxk3r4C27I7rvDcyP3M8H4jQkQ+v6Hx5LjnI/yY5D9u+fvM8rHKzTN7vP80beKOKfj3IqPj4vNu7iOGeU5jj8mf07lt+rjU3Ag9zqrMODZzW6Z/xxT+GTLnYO4+7zO3r+Bc5bLc8Qu/Hzz6OPXjl3ee1N8dt98s5yYAAAAAAEBjYL1S1XwRFiC84AyGW8FgKPwCNL9+xIs3tT36xZ89p586Y2yBF6Q5+oW2etFsvhhXq+5C2xSjH6vj0WVZHJPBO8fqxXDeGM19mefBEQokuZ/AmMOPqdNfrpyPQx9/NseUd97j5D0mzv4XOOM16xj8cYePWZHmRMaPE+83PC51DO4+cj9rwZ8d/jnjsiNH3Bo5b8W5V5cLUP16PE8C9Yo/vkBoZhxPuP+kECc2mJEeM7XNaVfKx83cr/T4Kcb+o37XKcK48h43o1ztT9/P8JhUXxHzSJA6NMs7puDvQfUz7p+jjI7L+znh2+p3oPEYmPdzP2PuOMxx5TH6VMzjCvwcMfc4w/8IyJ27rB4/93dw/vzzfn8F5gwLPtbu8Ut9GG0SHj+/jj/vszo2AAAAAACAxsH+7f/hF5Ye6QVp4MUsv+jMe+Hm0v0F+4h48ca4r8igwpLTh+pb9eXcFsal6TGkfXuk9fGwDI6J9xc4385tfgyCj1foBa9TLy8oMMYRPubAMQVebAsyOCYlPEaL+27AwWGB/JglhyleKBHY5sjgmOT96THlHp/cGJ2xGOHNkc58Vef91dfoFR4Pz9PQmOS5517L58q4n+lj5u5TjVEHrLyKWv1seY+NPgYLcY+Znuvi+c3quMw5L85/Pl5j3iQeW8zPV/hn1Sv3H7+sjsnDfctj9Dj7Mn+f2P4+zD+m0OMTPo6MjovHqsatHqPgfv0yYz/ivDE54zJ/dgL1Vahong/39wd/nErw2I06mT5+oXkX+P1lHrt723xcc9tzYzMf28THj6njD837zI4NAAAAAACgYUvxmapS2GSEPuY2/0Vr8AWb/IIrVCfqxRtLCvMs+AGC6kc6phDepzNmP1TgYzBemAb4L+Itj4dlcExMHRefW+8c++FBgB6XOya9XR9XLjjgcvO8hI/JfYxLfUyx59oTDjsCQaFDnQdjzuWCgvAxaRFzIpNj0nPB3Le+ndvGY448tyHB4wsfk96fc5vH75wvv18+t+bxZPiYuY+JdIxuHT+4Ccy53HnXc1eX5c5H+PhC28LHxLI6LrMf43ZwbMa84bEY8y4ofBxJ991565+rDI7J/z0YGCM/BuHzG8THy+Pw20tUn9Ixmb8z3Pu5x9+R5XHZ8I499zshQmCeJhyX97gHfi75uMzfKRkcp/4ZCdOr2M3PyJbmpzxvzWNLOE6tBMcGAAAAAADQWKT6oir9gtq8H36Rperwijp+QckvsPQLSyYGDeEQy33xFnyhqPcZEXilYr6IdEOEI0P7M/eb9+LVecHIn4sXPG5zXMnHEzwHWRyTwXhRHwgszBfJXEeHJzowUNtC43S4fQhj9OtLY8/omPTYrO7zPr1x++c3fxy5lVhRY0y7vUA6jPBDiNzjE/i5UvVyj0c+c0zhMbpzT/flzmWvnB+/QPiR0fHpeeH8jMkfk8HMsEaPyyjP+x2hCWMMHAeXB/vO7LjMsMi4nXuszN8rDh5X5HEYP4vqvvS4GeVqDsTVLxD3a4zR/J0hBo1qHPJ+zbYu6ZiMxzjvcWLZHFdu7OHz7Akdd7pQNX+Mav56/fl9GXMkfy5k9Pg58lcNR/UdPv/mOdL1zdtJj5/JrJfdsQEAAAAAADR0qULVwIvUiNBg/gjnhWToRatPamO++FTcF2/yi1xj/3lldswAx307NYc//CLQeTHIY/NeQIdDgnDgEHxRybwXkqmOhxV/TMx/MW+MP3+M7n7m88ceiKsFg7iPvIBAqKP6Djyu2RyTmi95xxCkx64eH/32eKcdj1uP/5URdf5Y/BAi8pjiQonij8k/p95tPgb3fq5/s44ap/SzpITGmjj33PvqseJzm1e3uOPToUv+fLLoO3yc3mOfG7tXJ/SY8bw39xe+n8VxKea+jdu5x4r3YzwWiXPXGFPE4ybW9cszOib/nDtzKTAGYW6psUg/G+55CJz3iGPSj6f6HZo3r7M5Lv27UP98BTnjDxx3rr7ZR4DzWPrHlndc5jZz/LnbpZqT6vhCPzPB/Zh4n7nHLjdvzcfdqJPw+Pm4XmBOZHNsAAAAAAAAjUHKUJXxi23nxWn4haVJv2hNChZUH6EX71Ev3pRw3SLx+OpuVfuTxme+QFUhAG93xlzIStXoF+1ZHFPuhWxeQCCFAI7gW7D5LaPBYw8eZ9IYudzcbxbHJIgJDfwwXx+rnoOqnM+PO55Kr1QNrCxTgYQ+b7nHMBd4eHVCAVAu2AqPKXxfmHt6n3XhUDWb48s9Ru6+A3NKM4MgbzxiPV/UY8b3pfpx56RAxjj98N7Znns8c3NM1Ve/W4zjDMg91u596XEzy8MyPCZvjMF/PBjn0it3jzN6v3mhqnhM4d8RobmZ0XGpENM5fzx2ddsbl39b+JkKjiMk8HtHGqO3jfs1fqbcfqXHMoPjVPtyzrl+nCLkjis4P/3fMYFzYdYJjzH8+Hm4faBeNo8hAAAAAABAY1DASlXnxZrzwku9tTcQyhhCL1p9YtDAL8LMF50RL95Y3gu4AvE4vBedR45Y4L2QdMbBY/NeQLshAZd59fgFrPHiXLfP0eNKcTwsk2Ny9qkeC3PffNvpl/t3ysJBcDBUNcMQs45uEzqmvMdXKC/6mLy5lneew4z9eMfKc5Ifv7y66jyY58cYs887b4FtjqweJ78Pb16M4H6D44gOVbm9ecxef/5xh49Jnnv+ufHOldqeyfE5AvMpvP/w+ATi7wgt1F79HIfH7J6jwPkr8rj0z3v4PLr75zLhmGKPg8+L2UZ63GLOU1aPlT+33HOmf07M4wz8E0DVk/fr/r40f49IxxTsW83DEszBcEiqHz9/fP5xy/XzBOZ0+Lhcqg8O281zoOYA/600jpFl9fiFH4/AOMPHxee/jkYEfi86v2ecxzdcx+0v+fFTwseS2bEBAAAAAAA0fJahqvuCKi880KGC9KJRChQigob8F38RL3Ij2qehXmD7QQIfj34h6dzn7d4L03BIYN43x6v60y9SvfMgHU/uhSwzzmMGx6T7MEMKPwzhx0Jt43Hk9muOOxAE+IKPQ/CYjGDOE3i8sjgmiffYiGXMP1ahTNGPtXs/fEyuUFChZXFM/s+Fe279YwmNm89teFzu+ebHTxifMTZp7uUfo7s98HOb1WMmPEa5uSaHLe6xeWV6HHxOuE1oTObxqX6FMQe2Z3VcIe4x6ePhxyQ0Ft6v97MhM34HeP0FH7dgeUAWx6TPryP2Zyog4mfDwY+h9LjHz0VvHmb8WKn9qn9WuMen96nmGc95/+cwVz/42OQzjy14XB7v8Q5uF+aFrpvBceY9Hk6/PM7c8eT/vjePwz8fuj33Z9wPHmfE7xI1j4JjyObYAAAAAAAAGr7EUFW96A0FAHn0C3T9giz0otUX9YKL6wde3EkSgoa0vBegbr9mUOC9EHaYLyB1aBB+Ae7WCb24tToels0x5cbm9sX3eVzqRTOPU59z43GJXKnKj5E+PvMYynxM7ryzZM67vDHmHk/FnH8Vepz0dbg8HIaYcy1Xn8eS2675c9X6mEzZHZ8ea+DnxJ9zxjZnjLx6Wtf356ojENzo+WjOYevjy+a4Anj/3pjDZeoY9DijftcpwrjKPBfNFajh32l5/OMI/Z4L/GwJY6rQY5V4PMx4bLh+YM6FhX9HFvQzppVgTmrhccbicXiPpfE7v7jjLOGxAQAAAAAANEAFfKZqaehAIvDC18AvfO1fMJZbOGxIPh7WsI8pH45J7qOhsTkmU1M9PszFymvOj5WkKR9nYzs2AAAAAACAYjWYUBUAAAAAAAAAAACgMUCoCgAAAAAAAAAAAJCCClU3f7GFAAAAAAAAAAAAACDZFfdMpl9s3bqVAAAAAAAAAAAAACDZ1WOm0i/OOLeWAAAAAAAAAAAAGrMz29fSubXniWUAWTquUx+EqgAAAAAAAAAA0Pi1rz2PzmovlwFkCaEqAAAAAAAAAAA0CbW18naArCFUBQAAAAAAAACAJgGhKpQLQlUAAAAAAAAAAGgSEKpCuSBUBQAAAAAAAABoZOrnLm62pPOhIVSFckGoCgAAAAAAAADQyHC42BwvjTVU3afr9CZNOuamDqEqNHktDjmUho24VSwDaAgwRwEAAAAAIC0dqt5z//Rmgy+NOVQ9psuQJqnZh6pvvLiWFi+oFysVon3tWeJ2aN6ynmc2EFhBQ9cU52glftabo5rac+nIfm3p4GtOokNvPJn2v/JE+sclp1K79u3F+qWExzwI56N8cK6btjSP7xNr1vik8koxx2VL6gcAIAyhqqzSoWrU6zuEqk2PH6ouXvAgjRp+tVgprV5dTqQHrvl36nXhiWJ5Q/DIfQeI20vl4n79aeXKlbRq1Sp6+eWXE3G95StW0IUX9RD7M3HfDy9dShs2bKCXXnop4MUXX1TbFy9ebNVXlOeffz7Pc889RzcOvUmsHyXLeWYLoSo0dLZzdMx991kbdfsdYh/FWnL7sbTojlbUoUP8P84K+Vk/4py24vaGgMPLI7q1of0GVNNvL29J/375MfTHy4+nw3qeQm2cMqlNqZ3Y+XQ6+LrWdM1jXWnCW5fQ+LcupTFvXEKXPNyJ/uuqVtTq/DPFdqWS5e/3Uv+NLsdzgLTnY/Wy1TRyyFy6ss9D6prvS/Uak63T/0l39j2NFt1ZRyvGXkTvr7pBrFesYubeC08+X/ZAqxz7SGIeaxpSX2FSOxtSX8z28eU+du3a7tkR22e58Vj27t1LK1c/6eP7URrS2AGgYUOoKssyVD2z/Xl0bocLqEvdBdShS526LdUzIVRtPjILVc+qPZ/OPq8D9b7wRJp6w+/om68+ogeubZjBKr+Y+vmnb8sarK5YsYK2bt1KP/zwgwo7d+7cGYnLud4333yjglWpP9MjjzxCX375Jb322mv0/fff03fffefj+7z9s88+o0WLFontbXAwu3379oBnn32WnnnmGZozdx516tpNbBdmM89+8T/7Ut9x68SyQiBULV6HLheK2xn/Ubn2+hvonnvuoQ4XdKJzzu8g1oNotnN08uTJ1jhYlfoo1qoJZ9LOr16kh+84ITZYLeRvyuFnnezfrjnnHPr72acGyivluAva0X9cdiy1m3QmDVnbnSa904/GvnkpXfdkV2o//Rz694Et6agLa8S2pVLT/lz6y7WtnfF0o7ufuYqWvDeKbnv2Irp5fXflqscvpAOuqC7ritVCn0d0/sdBgftZ/I1+5qV1dMGk/tT27i70j2GnU5s7O6n7m957q2zPAdKcDw5QOUydNmmDj++XIli9fcICn1SeFQ5Uv5jfnvZsXaw89fiTKliV6hYrzbnmsErjQHXxiodp7sPz6MXXXqQ3336Tnn/leapfPKdkoRb3u3rVilT98/PHMKleGrx/KcyLYzvmtH1/suXr2L5tH1/uo6GHqmMfmO7j++9/8FEe3l7usf+tdmjetlU3/ZsS3l6s3l1a09Ib/40W3PCfYnlDMmvWLJo3bx517tZdLAdoCBCqyrIKVTnn6tL9Irrl+s40+drf0ejb+tNV117v/F64SJVJbVgxoepFLQ8Tt2sr1q6jA+vGUIebZ4jllWITqjbkRTSFSvWZqtUDZ8caOXY0Tb3+P+mRscfQzh+/pEcnHEeTr/vPsgWrJw6aTa2vqKeTr5pDrQfOpLNuXEwXj3mchs56gVa/ull5+K4/0sN3/1G9oOJrJvWVNQ4+ddDJqzx//PFH+vzzz/Pwdi7XdXl1q9SfSffN4elTTz2lVqdKq19feOGFglescoC6bdu2gLffftsPVp96+mmxXaGyDFZtAys+148++qiPzytvv+fee+nyK66M/aVpK2ofUdvTuKTfAJp4//304LRpkcZPmEgX9e4jto9z9913O8d/nlg29KabaerUqfTkk0/SQw89RFdcZffC9qLeF9NDM2aKxowdR+dd0FlslwY/blMefJBmza7PM+mByXRJ/wFiuyxMm/4QzXGeiJ/fOTqQ1mznqPTCOsrb77wj9iHp2vl0qh9RTXNubZXo2dkX08/bP6QfP3+aFo06LnHFahoH1xzn3z7pnDPoiDNbB8orgQPVP1x1Al295kKa/tZwWvz+eLr9xV4BXHbgja3oH2UMVg/qexJdUH8uXbrsArpy6UD66ee99OiHE2nwk93VNtbu/jPpyJ5txPaVsvreAbRmRPeAYe2PpzcX3kefbliRyd/oIYvvVkFqz2l96Yp5VyoPrHuAFr+yrGLPAZLwytRr+i0IGHH9clqy5GVqN7EzHXRLK3U955WHxfa2+g+ZTPMe2eAbctdssV6xzED1lEum0O4vZtOO9yepFatS/XLhoOrbr7cou3buoKfWPU1zlsylL77cTD/99BNt+3Eb/fzzz/SlUz5r4ezMgy3ujwPVx1avtO5b+v2uSfVt8f737NlLi5euVNdPrXuO1jy1nlaveVqtolzx6Bpa9shj9PDyVapOmqCP63F9W0mhqi3uY8f2H3zzZoxX26JIfZQK74/Ps61yjY/D1C/eWxa45u0cpvLvyaxDVQ5UHx78G/r2wxW04rr/R6zTkCxcuJA+/PBDmjdvPoJVaLDyQtW7bqS6viMDIaS4jQ0bQO2l7fePpSu6DqAbw9uj+uHt7YX6jluv6U5114z1b7dv317Qna64K79tFL6UI1TlFaocqN49ojdNH/J7tXDwoSH70MNz7qYRI2+nC+qiF5alDVVHXtA6UrhuYw5VG+oimmKkClVPG7GS2i/dLLpw3nM09brf0q5v38wz5Zpfi/1lrefiD+mShz+iy1Z8TIOWfUwjnvycHnzpa1rx9vf0wdZdNO/W39NP2150/eBxbvN2qb8s8UrVb7/9VuEgkleQRuFyXdcmXFu+fLla1bp69eqSrVhdv369Wj0bhculdsXQwap0kepHSROq7tixQwXbfK3P/ZQpU2h2fT1NnDiR+g64LK9dGlH7iNqeBgebHKi/+eabkTgAHz9hgtg+zn333Ud33XW3uGJ17Nix9Nhjj9Ea5wXAnXfeSaNHj86rI5nlnFM+VsnGjRvp3vvGiu1sjR0/gV559VX1DwBpHzxv+XyNvneM2L5Y8xcsVD97ixYvTgxWbedo9159rNX16Cn2IZk38hQVlKa15dUH6cEbjxL7TKu6U1c67NJBdGS3nnRy+1o6tOZ4OuXs8r59PYzf8v/ry4+l7gvOo2vX1NGkl29Vv38eeW+Oum8a8Ehn+s9BLenk884W+8ra7wceR+dNP1vpu6C/GhdfnvlsAQ1+rIfafu7Us+hP/RvWu0XW3NyZ3n5sEn36zBTlhfrbaOGoq+i7T9/M5G80B6qH3XgSDV58HS14qZ6eeOcxWvvek/TRt86L4go+B4iy5ua/0IvjjlKrUs89+V7fFb3radas9SpMnbV+pI/v2war6277u2/KtInK4HuWKDd610yXSX0UIhyo7vIC1R9fv0t9FIDUptR0iLZ69WO+Tz/9lKbNfYieWP+E+tnZ+M5GWrpqKT374rP00msvqdtZBltq/16gunHjG9Z9S2FqGL87Qd+W+pDw/nft2p2K7Zi5nhmaPrluQ6SsQ9VtP3zrm/vQuMA4TFnsLw3e3+7de5T5Myf4t/Xq1PDtco1PB6mX3LbCD1Z1oJp1qNqrU2tacv1v6JsPVjg/cd/Qsqsbfqi6YMEC9S7CDz74gObOxYpVaJiKClUdfujJAasYeHq63ki3mvWFfuSANr7MDXArG6q2v/h66nDrw3TByOXU5fZHqO7OR6nb6NXUc8zjNHveZJo+ZB96ZOzRauHgyvEtVbA6b8YouqR/dDZQSKi6e/sjtHntPXm3w3Ubc6ha3CKalrTPL/ajo/zbv6BfRNjnGKfOMfvRv/w1YmXsKYfRv/xyP9rnl15dqY6lVF9U1e7WR2NNn3INPTR0X3qm/izas+Upen1Fd5o5ogWN6B98a1+pBFaqXj6TzhqymPrcu4aGzHqBVr26WZk+5LfK3s8fdH4YfksPDf6t2FfWOPj8+uuvlXXr1qknvvwHOoy3c7muy+2k/kzLli1TYSoHcRzivP7665mvWF27dq3qm1cjcoDG+1q6dKl6ssHbuVxqF5b2yyR0sDrj8ZfpsG5DqM31k2nmhg/VL1KpvsQ2sNLnjwNqDqE5COft/GKFz9vTTz+tVmLeN3ZsQas9WdQ+oran8eCDD9Krr76q/qsehecGH4PUPk5d167Us8/FYrB628iRKnhesmSJGgN/FIBZHoVXqqpVo/VB/GKXw2UOsqV2Nq689jr1mPG5fOONN9XHaMydN9+35OGHnTm7TpW/8MKLdNmgK8R+0ujsPBkYP/F+f7XtI4+sVIEu/xwvXLSIzuvURWzHbOdo+HNT46T5TNW+3U+j+SNPovmjTgl46qFe9PO2t+iJyR39bRsWXu1s20jbP3+Clow6jrpcIIckNj/r/PYP/m/lX9u0pEP6XkUPrllEne66io6/ZjAdfeX1dOq119JJ555Dh596HB1+WjW1Pac8gaV2WPdT6KiRp9DFSzoqd68bpn738GXtR4/RpQ939stYm/Gn058vOUnsK2v7DjyeTrynrdJzdl9vVO7lxS9WUP8lF6iyPw44XmxfCjaP+eohnVSYuuu7lfT1yw/Rm8vvo0n9amnLa0vop12fFPU3mt/yzytUr5p3Ba3etNI7G8FLOZ8DJJ2P+h6/80ZFdFm3adS9wwO+SWOepOp7z6Gr5/Rz9Ker53rXzn3eLvVn4r7N++MemEI7d+2JxOVm/UKF3/K/+4t6Fahue/1u+nLRBapcalespHPNAdXGt9+nz7/8yvfj9h1035TxtGTlUvUYLHpkCd0x7m4aM3kc3f/QA/TAzCmZBVvcjxmovvDCc9Z969DUpANU87Z5X+onjPe/c+cutQqVrxcueUT04Uef+HVsx8z1duzaRbv27qU1Tz/rW//ci4p5m+skhaq2zx25j6+//NRXP21sYPWnDi3LuRLUxPt0A9Wd6loKrrVyjS8cqr6wvC/9tPczx+f0057PVagaReovSq8LWtOia39D37zvBqoqVB3ye3r4yv8nT/2Vv6eLO1WL/ZRCv8sH0sxZs2j+/Pl5eCGK/ng2fp2GYBUaokCoOmwA1fV1cAjad2TkytBgKCqtSo1YqarL+t5It6rVqfl9+zhEjQlzcyofqp57yxLqN/cDGjj/Q7pm8cc0eOmndMsjn9HdD6+PXDj44PX/TkNuuETsjxUSqnKI+kr9jert//p2UwpVs1lEo4NV5/qXh1Erta0tHfRLHbbW0lH75oJSvi0Gqxyq7tvSuc1tf0kHnRIqTyHVZ6quHt+GXv5sBz39/rY8r36+gz78dhc9ung4zbx5P9r7yQJacMdfac7wP9OZ5yR/ptuBBx4YSaoveWzpcHr9B/INv3de4P4Xu1yTrvo32vPuUHX97pt2KwKlcWlS/TAOIDn4ZBx46tBUwuW6LgemUn+mhx9+mL744ou8Fav82awcGplPuPk+b7dZscpL3Tl84n45UDT7CePyadOmqfrcTuqPpfncM7488/5XfrD67Adf030rX6SWl95Fd6zeqMqldmG2gRWfaz7/X331lTqP+tw/8MADgS/o4lCZX7jcPXo0dUn5xIr75L55P3ze9D7M7bxCWW9Pg8fE46uvr4/EQTsHn1L7OHfedZe6loLVDp0vVMFq9+7dqbOz/bxOxb1tn4NWDiP5Wiq3MdWZi9zHypWP0oXd8/95wG/l6HXxpfTGm2+qn4n7H5icVyetyVOmqtXAvN8wfiLOT9ildsx2jvJjbIuDVamPNObedhL9/P3L6lpve/juGtrxxRpaNKqaunSIXnVm87Nec+65rrPPpkP7DKBzbruYjr3yNFrx8jpa/MLjNPDB8fTX/ldTq66dqfrMdnRIuxPokDNbiX2FSb+rNam+5A8Djqc2E9pRhxnnKDevulH93tGX1za/Ql3rL/DLa6edTb8ZwH+c5f5M0rg0qX7YvpedQC3vbKP0mHWpNyKijVveoj5z+9Dxd7ehY+5oQ78fkPtvcBrSuDSpPrN5zJdf20GFqhyoqlB1xVgVqvK27zYtp51fbQr8jZb6iHL+hH504eQe9MC68d7ZIFq5cRndtXokDXl4hLq/ZdsXBfUvnQdNqs/izseaG/5COzePVbZuvFN9diqvUL1+0Bxl3N2r1arU40fU5OHtUp9auO/NLw2nuyc8RD/u2BOJy6W+bM29vbNSP6ozzRzeMRCo/vjaXakCVekca1J9ZjP3OKT65PMvlG0/bldWP/U4zVpYr+bGa2+9TpNnTaW1G9bTlq++pJkLsnv7P/ez8pGlfqCa9u3//DvdfM4VFv79L/UTxvvfsXOXb/qs+bT5iy8DeJtZx3bMqu9dThvHqifW+ThE1dv0bVbsZ6pyWzb7wftoy+YPfHxf0ytDNdtjYf0GDIok1Y/C+9y540faudPFwSqH1UwHvixNgM2kcWlSfZNenaoDVb7eu/tt5SfD3l3ONTO22QarPS9oTfOv/g19/d5Sop+3JPrg+ftp5iC7dxBIvyc0qb6E/4n/ySefOOc9/3suwt5//33n+fQc62BVekw0qT5AIcxQVa0i5VDVC1QvHuYFkebb/Dl4FVaauuGmEI4qUQGrI7I/hxGqSgGv267yoeqpV9XTOaOeoXPveJZq79xAHe7aQB1Hv0AXjnmJFk4fRIvu+ju9vLirWjj41qp+tGzscTR/zJk08KqrxP5YmlCVQ1QOTxnf1sxtZn2rULXVEfSLfz2FjpDKSkQKVUu3iMYNVY/66y+Dq1T3bRkIVVVouu9hDqOORAWsZv/2Ur39f9l9NSpA3baXou3ZSy8+ejPNv/XP9NiMzrRsjP1nJBTzB5GtXHxbIDzlUFVfh427/F9U2aY3HhX7khQzPh18sieeeEKFmhJ+OxqvBtV1OYyV+jPxqlNuy0Ech6l61aP+bFYd0DK9fcuWLSoAlfrTuJwDRm7DY+bQT1qpytu5nFfAcv2kfm3xhVemzli70Q9Wl77+GQ2et05t54vULsw2sOLj4XPOn23L50ef+0mTJqm3tofxeb///vvpFou+Ne6T++b98OOh9xG1PQ0eC38Mw4wZMyLx2/9tX3CZdKjKbrrpZrp52DAaPGSIv+38Tl3ozjtzdYoxc9ZsNef4Wiq3MXP2bBWW1s+ZI5ZrvIKV6812niBL5WnUz5mr+lq2bLm6vWr1anWfQ3L++e91yaViO2Y7R6UX0xJ+jNN8pmqU+uGt6Odvn1HX/rYhh9PcW46mzjGBaiGOP7+jClCffW8Dvf3FRvr4m/fp1U+fo4mPP0gtLh5ENed1FNvFKeZ3NvvVZUfTSWNrqM3405QrFl+tfu+Yl4+//ZgunNHNr/O7y46lU85LXknIihnfgZdW09G3n0InjD7VX6m6cuMq6jC1q9rG/j7CeQLT4xSxvY1ixhdl8aD26i3/vEKVA9V1k4fQVe2O87e9v24ubd64Qf2NltrHaX1HJzpzTCeatHaKOh/vbHmXuky6yHfJQ/2ox9TetPiVh1X/k9fPE/uJkuX5eOSGA2nn1vW+Xd+/qILVXh2nUI/zJ9O9t66m/7jiRDrpvjMcp9PJ+nrMGWq71KcW7puNHOP8Xv1hdyQul/qywWHqs+ufpWfWPkNPrXmaVq9YRfdfd25RK1SzPNcah1QffPyZ8sO2H+ku5+/aZ5s/p+WrV9CGl5+n7Tu20zdbv6Eft/9Ib2x6kyZOn5Qq2IrCfTz15BoVpnKwyoFqmi+qkn7Hm8wwVZP6CeP982pdXoXK15MenJX3maq8Ta9U5Tq2Y+Z6OjBdvupJxxPqWgep5m2bUDUJt/3kwzcjzZo6Rq3+1KFlIStBiw3FeH/mRxNo/LmvZnCdNsDWih0fh6l7vl/uWGHg+3qbvp2z4vp/Ffsyde1wCs298jf01duziXa/bW3B5fYfDVDs74u5c+eqd0jZeu+992j27Ho6v3P0O5BMxT42AEnMUPXGvu3p4muE1aFm8OnfzoWoufs6PJVvc/8qEDX7TxGq+iEvC4yjsqHqxFtOo7Wf7/Lp+298s4c+27aXnlxyHc2+ZX+1cHDhHYfSkont1fd2dO99sdgfSxOqsiVjb6Od3z9EHyy5hibdMti/fVmr/C+takyhapaLaA76pRuAuoGp3UrVaGb74qQKVReMbpcYqu7Ys5v27vycPnxxEu3a/YNqI/UVpdA/iOzhBXeoUHXLLsduN0z90rn+0rnP17xN3XbwWH90LF1o/xZZVuj4OIDTX0a1adMmFUzyitKwxx9/nN59912/Lr+lWurPxG/r5v+whlesPvfcc35IqG3evFl9kz/f5s96lPrTONjTq2c5ROTAVPdjhsC8nct5f1y3kEBQwhd+y3/vGc/SrY+85ger9z2xSW3ni9QuzDaw4nPNx/Pxxx+rY9PnnsNKPrdh/LYgLhs9+p68vqJwn3z+eD/8WOh9mNv5Wm9PY/z48Src5pWoUTgU5zFL7ePMnZcLH2o7dvLpbWe1P099RIC+n9a5HTrSBGdcD0ye4vysLFFB5MKFi9T9cQV8Buz0GTPUi80ZM2fmlfG+pjrngkNb/pgFrrd06TJ1//4HHsirb4tX1nIYPPXBaf597psfy54XR781hNnOUemzU9nV111Po+64Q32kAt8fN268+oK1jl2K+1KYWbdU009fP66u9bba9mfRObXZvg2f3/ZxeM0J9Oc+V9DzHz5Db3z2svNHdj6tf+9xevTNBdRt3M30t57RoXScQn9ns38bcLQKLrVLZg9Sv3fCl7seG+fX+c1lLamNZajKCh0f7+OPA6up1X3tqFd9P5q0fiqd/UBHau3cZyfeexp9fOif6YuDDqIvWrRQ3vjrYWJfcQodn4S/5Z+/lIpXpmocqGp625pp99Azix+iuwem+5iVw4fU0KHXt6Y7VrsrVZ989xk6+LpWdNC1Jyp8+/DBp1CfmdfQ8o1rqOdD14r9xMnqfDxy1YG0c/MC364vH6HdXz9Be759xvXDG3TnkxPcL6iadI7rgXPUfd4u9amF+2a33DOXvtq6KxKXS30l0YEqW/vEWnp85WO0YtFyWjxrAY0ecHpRb/nP6lxrHFK98/5Hynffb6ObbrpJBavvf/SBClYXPbKYHn1ylbrmt/+nDbUk3McH77xMy5ctVqEqW750kQpX0/QvBah6W3g7k/oI4/1zUKpDvHGTpuetVOVtujxtqLptxw7f4hWP0ZJHHlNBqr6vb7MsPlOV23/03mt5Zk65l/RqUFMh+ys0FON9bf3mC9+3X29W9H0OVvn86tA3zbk2FTo+tuiKf6E9H9/tGE17PuFrh77W2xVvu2Oh00bqy9SjY2uad+W/0/cfzifa/ry1eQP+b7G/KMX8vpgzZ07ed0XE+eijj9Q/7TvFfEFNWDGPDUASM1RV4eQw21A1XJYLWfMZK1XDb+l32ufV9z5/tbGEqmOGtqMNX+z2mfdf2LKb3vh6D61deh3Nu/XPtOrBjjT5gYl06YDLndeVF4j9sTShKn9efviLSTlQffLeiwJv/79t6hzqf898hUNVvjb7CWggoaopi0U0rf76SyNUdT8TNbjq1NmmQlUOWs0QNqwEoarN5xXNuvPMxFD1x93baPfWZ2jvV0tp+/YvVBuprziFPoGeN2e0ClW/2U30tReq8m1zhaqJ68x32kh9xSlkfPxWew7M0uIwVurPxKtF+ZspwytW+S0q/KVXHHaaODTkvvlzHqX+NA6DOJRlHAIn4VWSXDcuELT9XCzGF16R2mvKE9S/3vlhe+rtwGes8kVqF2YbWPFjxOePA2oONvXHI/AXVJlhKp/vB5wXLffeO4Z6X9o3r584eh7o4FbvI2p7GvyFURxu88raKBy6cvgqtZfwW/n5M1L5i6qGDR9B7Tvm/nDwSlVesTp06FB3paqxmjUtDmjnzZ/vh/gaB/ZSMJqkT99+6tv3OWAMl/G+5nsrrE28v0L2pXEoyy9up0x1P17hwWnT1LfFJgWqzHaOhj83lY0dO059RAW/kJ4wYYLz+E5Q93ksY8eNowvq0oXd59aeRQ9c15IeuvU0WjX+PPppy3JaOe4cdX/8VfbhiO3P+hHntKHDzmhNJ515Bh3aawDdtWwKbfjwSVrx2iK6af51NOOZiTRq2W10QPdLqcUp/6S/nnZ86s9WLfRvyu/6HUv/HNWGjr2zrdJ3zpXq946+7Nq7iwYvHeGXH317G/pl//QBUqHjO+bC02jfgdVUM+48ajepPbUZf4Zy7J2n0n6XVdNT//pLurCmndKvVWt68le/EvtJYjs+m8d8Rq92eV9UxYFqeNva8cPE9nF4peo/b2lHV8y7RT0+H337KR074kxqecvpytRn5lH9i4upduIldNIdbn2pnyRZnI9FHHx+MDmg/pL9rUj9maS+eZsNqb8o+i3/bN1T62jN6jW08uEVtKR+Ec19sJ7u6nta0Z+hmuXc45DKxKGqDlY//2JzXrnURxrcBweqn3/2Nn3y8Zu0eNE8tUKVzXwo3ee16uBUh6hR9/U2qY8w3j+Hd3oV6pgJU/NWqvK2Qleq6sBUm//wSj9Ine/0lyZUtf17wn3wOdceeuAePxTWgSXj+7bHElZIKMb7YvwZr599vMlXP+0+tY3x+TWVc3xafb//l/Z8dLvrQ+9a3zZ52+v7/79iP2F9L2hJcwb9lr5/dyrRd6sTffHiaHpowG/EvuIU+rd01qxZ6jm4+fMUhV9bzZo9u6DvVkCgCqVihqqKDjL5Ohx2mnQwGg5ZHe6K1Ii3/IdCVfWRA4H2I+niRhaq3nn96fTKV7t94fvvfLeHvvruO3rrmQn0ynMrqffFPWMDVWYbqnKAymGq9MWkvHrVDFUfXPYYtRo0OTlQZeFQ9axT6H8Y4eOvW/H2frTvv/6C/seR/fx2Rxz5u1w7sU20uFA1q0U0wVBVDkXNlaq6Pl/r42D/8tfDsg9VbT6PaurIcxJC1Z/ox51f0O6vn6Qd2zbSj7t3qjZSX6Uwc+ZYFao6c562Ojg45Wu+r7eZ9xm3kfrKGq8m5cBMe+ONN1RwZn6JEIeRvIrVrMfbpf5M8+bNU29F4brmilWmQ0KN7/N2/i8rh1hSf5oOadOKC4Jt5pnGF/7sVP4M1SELN9Cdq9+kGetzwSpfpHZhtoEVnz+9WpTPEYenvJ2DKv1xB7zac9y4cdTvssvV53KG+0jC++BzpINbvQ++lranMWbMGPXZtlKYqvGXoHFAKrWX3HTzMPW2qHvvvVd9wdWVV1/jl3E4eXHffuoFabeevYoKVVn/ywepFaN87vmfAnweeDVwjz7Rb6solN4Xf+QCh6m8z2L3xV9OxeEsr67l+3x+eFVsuJ7Edo7qF80SfrIfvs84RE+zmoJD1bm3tKS9n82lnzYv8O36aBZNu+FIsY3E9med3w5y2jnnqtvHnHs+HdhjAM14diotfW0WjX1sFHW+71y6bv4V9B8XuI9Nq7NOp8PPLM+XQR100Ul08M2t/bfT9593lfq9w5evf/yG+tRf5pexw0ecRAdceoLYV6nwitW/XNqK/vOy4+mPg6rpjwNOoJ/++U/62bHjiCPUNfvpqKMC96W+imXzmE/p1lYFp+Evqgpv43pS+zhdp15BLYefTp0m9qbvdnyvHqdHNz5BfWZcTbevclevbt3xHV3glJ85pgtdPHOw2E9W4s5H/SX70s6Nd/o4LN35wdhY/NmoNqFqft/OfaG/MK4n9Rflk6n/oJ+3jXLO6jM0Y3hHWrX0UVo6dwktmD6HZt8/g+64tEZsVwppnltoOlRlhQZYUbg/M1B9Z9Nz9MqLK2nBvNn+W//T7NP83R5m/u7n21J7Ce/fDPHuHT8lb6UqbzPr2I6Z6323bUfArAVLVZAavs2K/UxVjfvgIFUHqubYw2yPJUu8z4/ef93Hn/WqP9+X6dCXb1difOyhPv+L9nxwq+v9W9X9KFL7KJde0JLqL/8Nff/WGOcP6HxlwTV/oNmX/N95Hur7S+rbqfDPtkvrCue57cyZM1W4GsbPgfU/3/m1Fn8+fqFfVgtQKpGhqr7viA1JzVDVC2LrrhlprFoNtdP9e+3URw6YYWlMqBoOdhtKqHrr1afTxm/2+Pj+3SMuChh9c2d6btF1NPHWC+iCju5rlzi2oWrcF5Oa9VILhKr9aN8DjICVy35xBLWQ6v2rEbhGtYkQFapmuYgmL1Q9Zr9QWNpWDFXd9ubHBAQ/MqAYqd7+P2F4bXSouucn2r7rO9q19QXa++XDtH37Z2obt5H6KoXJD05SoaoeE4eqgTEKuI3UV9Y4sOHVpBr/keZAh8Mjxl8gxG8HD9ezCdcuG3SleusK1+U2Zhi6ceNGdV+HtvzRArxdfYOl8ZZuCbfh8DUtbif1Vwi+8Lf984pV/e3/T7y9xQ9WpTZhtoEVn3t+QcIhG1/zfd7OoRQHirwSdNBVV9M553fIa2uL+zSDW70PDsb1dj0Pwm2TjB49Wq1M5m/ij8If/cABqdRewsfMH0vBK2D5i6h4H+E63Xv2onvuubfoUJVx2Pnw0qVqfvIqz1IEqprel/vzOK/oJ8m8MpZX1t4/Kf1HCNjOUZ6XEv1iOsqo29N9zEnvLm1p8ahq2vH+RNr76Qza9tZ9VH/zUdT5/Gw/RzXs4LbH0GEdu9D+3fvRgOk30V2rbqH+0y+mA3tdSEecn1txW+OFsKV28nn8xVPH0An31FCrMafRZQvcz1R9/+sPqeOD3dQ2rdqp89uBTt0LzhD7KqfH//3facuQq+me/f6orrUHDj2YPr38UlUutSuHiZ1PVgGq9EVV5jauJ7WPw9/+v9+glnT2fRfSVfMG06Yt76rHS18++24zjXx0NNWO66bqcX2pn3J4sMfvaOfG4YoKVL3bUWwDVZa2b8ZtpL6imIEq0c/q/E667lxaOGM+1T8wk2aMn1bWULUQZqiaZbDK/UiB6jNr59GTj9UXtB8dmkqk+jZ4HBze8SpUvr5n3GSRXqmaJujjet9s26ZwaMrX050Xvxykmrd1WRZv/2fcBwemZqCqg8rw7Sz2lxbvU6+iZfxZr/z5vpJKjE/jwHTPe7fQnveHpQ5P43CwOnvAb+i7jfcQfTWXZvZJ9xb/SuCwlV8X8OsnfjdT9169xXoAlZQYqg7zvqSKr3XYaTLC0Vw5B506TB1JF/sBqHPfC17dulwWEbqGbuetVPVVPlQdMujMgKFXnEGvfPRZwMb3XqNXPvyURgzuTLXnZxeq8qrUqC8mffn59+jKPg/RyCFz1Wfvm+0ShVeqOtQqVD+A1AHpBfTrX/yO9j3Lua1WpgaDU7mNLCpUzXIRjRuS8pdP/dL99n4OVb0vmeKyqFD1qL/yqtTwZ68W963/WqpQ9Z6bzw+Eqj/s+Ym27dlDP+7ZQdt3fkW7v3+e9n67hnb+8Br9uHuHqsNtpL5KYdwDD6pQdcdPDmffHKrudG7rt/vzdn1bl3Ebqa+scWjGbxnR+L+fHHhq+j5fm/Vsw7XzOnXJW7HKzPBWh3W8nevNccqkvjTu75133lF1bXF9bif1Vyjpwtttg1XbwIqDaR474/PG93k7v83/hsGDqX3Hwt4qauK++fNC+fHgsIv3o7fzf8HD29O4/fY7VGjKAX0U/oiG224bKbaXDBs+XD2h5ECeV+nyRwFI9Xr2uZhuvyNdcMcrA6ZPn07Tpk2jgVfmvjmRw07eboacUXVtRbXvd9lAtS1NoBrVF39OK/+sTZg4MbFumO0cNT9HVet1SV+6tP8AmjBhYiBINd1x551if3F6dW5Li0ceR19tGEqzbjqKOpU4UGUHnXqs+q/kied2pP079qJf1l5Mvz6vN/21to5qzpHblNqR3drSPlecQCfe2466z+xDz3zwHJ1xfy2dPPZ030mO/a45gQ7q1Vrso9yW/du/0fBf/YqW/XFfda0t3++P7nanXGpXDuMuaJ33RVUcqoa3cT2pfZLBi+6kg69tTa1vb09dJveiaxfdRDcvH6mu+X77cd3oyKHtVD2pfblM7PAr2vnSlW7o+dKNsdIEqixN34zrS/1EyQ9UtWdo9IAzaMaE6Q0+UGWNJVBlUpiqSfVt8FiCQd72RLbj53o6VNUmz5rvh6rmbZbVZ6py8Gur2P0VgvcZDlV5WxSpj3JRweq7QzMNVdklF7Skmf3cYPWhXg0/VOUveeVA9SHnGoEqNFRxoaq7OjQXeobvq6BVrRq1DzW5j9wKUyNs1XSIy7fDAa+o8qHqtZedSR//sNcXvv/hNz/Sp28soE+/3Uo339CV2p/fXuzHZBuqxn0x6dsbv6RpkzYoHK6mCVZVGHrABe597238/tv8Q+FpiwPcMm4TrBPdRhIVqpqKXUTDgekvfvFL2odD1b+2dUNVP/SNWKm6rw5eg6GqDmHPOOUw+pciPgogVag6cvAFbqi6Zw9t3/Ut7djxOe3Y/qH61trdW5+mvd+spF3fvUjbdnHw+rMKVbmN1Fcp3D1+hgpVd//k4uB0j/M8X9ttXnMd55rbSH1ljQM6/qOscXj66quv+vR9vjbrpQnXwitWGff30ksvqc88Xbt2rbrP299+++3Eb0bnz4LUIWMaNp8hmRWbYNU2sOK3SHO4pnW8sLgv+ZHMnj07cK7q693PCDO382Out6fR+5JL1WpR/iKqKCNHjqJuPXqJ7SUdOl+oglVesTp4yFD1GatSPVZ3UQ9xexReOcsfrcAfp8DXUh0tTV1Jse1NUX1d0n+A+qzdzs6TgqS6YbZzNE7dRT3p3jFj1Mpq/lxVHajy/aTPVT39oquo5vKJdGr/sdSua+4zv3p2akv3X3YwdTovGKhG1S8W/1fyiNNz3/b4p5Z/D5RXyhHdTqFfX3YMHXNXO2oz/mxqO+FM39F3nkr/Oeg4+kuvVnR6e7l9ua35X/+LXj/5RHW98fRTFX1fX0vtymHtfZfTfR1bBfCXV4W3cT2pvQ0OTA+5rjWdOaaOzh3fjc4d53Cu+T5vr3Sgyka1+6UXel4ZK22gymz7ZlxX6iPOF29c5ryUyQ9UOWi9s+9pjSJQZVkHqoz7Cgeq656cW1Sgyvh3uRSo8napvg0ez/c//KhWofL1U+uey/tM1WWPPEYPL1+l6vCXe9keA9fTgenX332n3D9jrh+kmrezDFX5OMY+MN3H9/XqVBNvL3Z/heB9mqFqJcaQBgeqWYeq7OIOLWlaz/8vTemV/vdPuU2dOlX9cxyBKjRkUaGqWnkqBZpc7q08vbGvF2Z628Jvzw8I92WGp95qVl3XX5EaF6r6ga5DWkEbgy9ZhqqD+p5FX2z/yafvb/lxN33y6bv0zSdP0uc/7FLbBl/Tlc49T+7HZBuqxn0x6bNr36dr+i3wDbuqPtA2WuizUkOrVt3Vp0ZAyoHpvx5Bv/5Xb8WqTRuBTaha3CIaDkV5dWlL2ucX3ipTY6WqFg5Vf+EHptxeB7D70VEcpurrUB9ppPqiqluu6+z8YFxLE+7qR8+sGEbvPz+a3lh7O7257g5au+wWmjlpEI25/VK6fVgfGuXhNlJfpWCuQk1D6itrHJJxkKlxuMmrOjX+LEy+5u26zltvvaXCNqm/KOaKVb0ilsNZDlQ5XOX7vJ1XxfLnAkl9mPjzMvWX4CThelxf6kez/bKBLGURWGWFP2eTv5Fd01/8FLUdmoes5yiHuDpQ5c+7leqY2lwymlp1uYmqO1yrrqU6Jpv6hfys838kzbd6HHji0XTKWem/7LAUWnU4gw645ET1RVT/PvBY2mfQ8fSry1rSHy+tpuM6ni62qZQvr7+Cnvu//q9IXC61K1ahv987/+MgcXsx+K39Z4/tTceNqKUTbjtfXXec2L+sb/lPOh8TL/y9FaltEqkfidQ2yZYPpjkvZThI5UsuUN296bqKBaqFzL0sAlVub0tqn0Y4WC0mUGU8Jg5K07A9Dq7HQWkacX3bPL76eDgQ1sLjN9keS5Z4n40pVAWAxiEvVG0G+JJlqNr/4nPp6+176NudPyu3Db6Qvv5+O331weO05auv6IsvPvLLrh5YR2fVZvf2f8YBKq9M/W89jlDXfH/l0tfp3JPvDeDVquG2YbzqVIWGepWq4oasejXn/zjgiNCqU688VZt8NqFqFoto/BWmge2hwNTbrt/ir8JVLguFp3p77nNX00v1RVW1Hc5T6rp1oBuv7003De5D11zdg/r360rde3aijp3P9+uYpL6amwEDr1ABKYerjMNNXlUaxtvNOoV8pqResWr2x/tmer9822ZFKa/Y5M8T5XZJuF7S26gL+TKJYjWkUBVAkvUcvf2OO+nu0aOpS7eLxPJyKPRnveac3JcbHn9GDR16Witqd07yW2zKpV379urLofjzVmvObTjjMtW1rUkktStWJX6/N2Q4H+VTyLlu7oEWH38hpL7CpHY2pL6YzeMr9ZdE6qfUKr1/AGh6EKrK0oSqlw0aQIMGdqerruihDLz0XHV99RUX+dsY17np5uvFPsLShKph69a8Td07PJDnsm7TxPoNhU2o2pAX0RQq1dv/ARojhKrQ0GGOAgAAAABAWghVZWlCVXZm+/Z0ttMmzpnt7b8st5hQlT87lVemXj9ojo/vp/6yqjKzCVVZQ19EkxZCVQAAAAAAAACARgahqixtqJq1YkJVxgFqr45TVJjK1w09UGW2oWpTg1AVAAAAAAAAAKCR0aFqc7s09VC1MUKoCgAAAAAAAAAAjQKHi82VdD60SoeqURCqNj0IVQEAAAAAAAAAoEloyKFqUyYdc1OHUBUAAAAAAAAAAJqEhhqqQtODUBUAAAAAAAAAAJoEhKpQLghVAQAAAAAAAACgSaitPU/cDpA1Fapyig8AAAAAAAAAAA2PFOhA0LnqXJ1HZ7WXywGyhpWqAAAAAAAAAAAAACkgVAUAAAAAAAAAAABIAaEqAAAAAAAAAAAAQAoNIlRte2o7gCZLmvMAAAAAAAAAANB45YWqixc8qLzx4trANvO+tE3fD9eLo0Onk085tVn4S4uD6OSTT1b4dnOkj186P01VseHq6ee0h2bmqGOPp38ed4LCtwFs6XkjzSsAAAAAgCTSa9Ik/DzUvN0c4Xl4ZZnz0UZW2WdeqDpq+NXK4gX1gW3mfWmbvh+uF6U5halMB4rhkLG5am7BKksbrJ5+9rnQDOk/yOE/0gBpqCd0wvwCAAAAgBITAp9GIXQc0mtUCT/31NfQiJ+HS3OiMQgdR3h+Rskq+6zI2/85XDrp5LbNhg4Rw8Fic8fnRDpfYVJA2RhIx2IbrLY761xohvQf4fAfZoBC8FyS5hkAAAAAlE445GkspGORXqua+Dmnvoacxvg8XJoTjYF0LOF5WkplD1WbW6DKVKD6lxYgsA1Wm5KkYLXdWedAM8V/fP/R8jiAzLhP6OT5BgAAAAAlwEFPYyQdi0N6zWqSnoNCI3weLs2JxkA6Foc0V0sBoWqJ6eAwHCaCC6FqvtPOPBuaoX8c4/7h5WuArPCckuYbAAAAAJSGFPA0BtKxMOk1K+Pnmvoa8jW25+HSnGgMpGNh4flaKmUNVTlMan1Sm2YFgWoyPkfSudOkYLIxkI5FiwpWpV8G0DwgUIVSQbAKAAAAUE4c9DRG0rG4pNeuTHruWXXsiaJ/HHN8Xt2mrnE9D5fmRGMgHYtLmrNZa3Chat9BN4nbGysODP/8lxYQIzFUbaSkY9EiQ9Uzzoq06NZDY0ltoPHgP7hVxxwrkh5vk9QGQFNP5oQ5BwAAAAAlIIQ7jYJ0LB7ptSsLP+/8+7En0i971dNves8O+GWv2XREdU1e/aauUT0Pl+ZEYyAdi0eas1krf6ja+pRYKlQ17q+5+iB68vp/0t1n/UFdM7O8oUOomkyFqsK58wmhJOvVq5cVqW0SqR+J1NYnHYsnKlStOf2sSPOH/5V27d4rem1RLxWuSe2gcYgLVW0ee6kdAOO5Jc05AAAAAMjeaWdw0JNPej0pkdomkfqRSG016Vg06bUrCz/v5FD1txfXU/jyX5fNbbahqnQ+GyJpTjBpHkmktkmkfiRSW006Fk2as1kre6jaqvUpsThUNe+vGvQX2r39Ebqn9r/U9WNX/SNQHqXb+PW0fnwPsayckkLVCY/NojMmXBYwaO7tYt2Gxpzk5na+RJVJ+BxJ504TA0sH95104TpS2yRZ9C0dixYdqp4Zac4th4mhGtu06lp63Q9W5fbF6nprPa2ccJVYZqPY9klK3X+p8R/cvx/dUmT72Etts9B19idE628Vy2wU277SKjV+/h2jmdv17x+pTOI+mZPnHQAAAABk7IyzRPy8LenCdaS2STLpWzoWj/TalYWfdx7Zspp+c3E9vfsNBRwwYC4dfsKptODVz0XhfqLdSus+mU1dxTLPrevd5+58HXH5ZHYPua2Bz5dmbudLVFlYo3oeLs0JBx9j0oXrSG2TZNK3dCweac5mrUGGqqbR5/xeBar9/vlrdc0rVqV2QUNo4bvraVx3qay83FD1L4k4TP3DTe3ojhVTxPJ4N9Dqne/QA+e599tPfod2PHZDqM559MA7O2n1Dea24pg/AHybt+nb+qK3x0kMVSOY+4m6cB2pbRJuZ0Nqq0nHokWFqqe2OzPSzGGH045de33rPvyaDqwbQ33ufJQ+WH+HCtdeW9STZt18uNjeVDeinlauXOkbf4Vcz6TajL9KLLNRbPskpe4/ivTLWyK1NalQ9Z/OH19Bmsdeam9SAaFxWTdCrmfyQ0WhzEax7fOMiHqC9AnN6i7UL1Lm47fEv2P0hW/zNn1bX/T2ODy3pDkHAAAAANmTXgsw8zlc1IXrSG2TcDsbUltNOhZNeu3Kws87jzymmn7dp56WvkMBf+w3lw4//lT6c7e7ROF+onmhqljGetCsT9bTLXybXzNIz+Gd7SpUDW8P4fOlL3ybt+nb+qK3R2lMz8OlOcHM4426cB2pbRJuZ0Nqq0nHoklzNmtHnHpumUPVVifHUitVjfsLe/4psFJ1UZ/DAuWSbuPW07vvvhtjEd0otCuF5hKq8kVPeH3RdcLtwlSoKpw7nxBKMr2/JFLbJNwu6ZLYt3QsnuhQ9YxI04YeQT/u2KNs37knEKz96NznbXw9/aYjxPau7jS8fiWtrL+V6gLbJtDAQL18bmh5pVhmw7p911tp9srk8TQ1caFqmsdeau/iJxjOxA08CTGedMQoW6jafTZ9QsnjMd3iPFeyeVKUqIB9l1r495D+naYvuk64XZj7ZE6edwAAAACQMQ56BPq5XBKpbRJul3RJ7Fs6Fo/02pWFn3dyqPqrPvU04qk9AftcOkeFqocde5Io3E+0hFBVB6Z8/Qm/BplNs2br1yHea58CQlW+6MdHX3SdcDtTo3oeLs0Jhz7uJFLbJNwu6ZLYt3QsHmnOZu3wtpahar+eXURS3SgcJJ3Y6uRYHKqa9+sv3I/mdj9Ehap8zczyfIPdVardpDJHt/G0/t1FdINUVgKFhKpv977M99FTT9G7w29Xt/laalupUJVF/RDosnB9CZ8j6dxpUihZarY/3FJbTToWLSpUbXvaGZEeGPI3+mH7HuV7hxms/fCjs5052yc79aT27EIONutvpQuFsiSq7fgrxTIb1u11qCqVNUDSL2+J1NbEf3CP/OcxojSPvdSe1XGw6TwBqRPKkqi2628Vy2xYt+8+mz6m9TRMKoswbD3Rx7MvEstSKWDf5RD1u0iXhetLeG5Jcw4AAAAAsie9Fig129evUltNOhZNeu3Kws87/3bMCfSrXjPpV71nBznb/np827z6sdTzc9sLP493A1d+vTNstnPtrVQ90rleN8Lpz7hv+/qh2Ofijel5uDQnSq1S8zaOlHsyqS5r8KFqOhfRuPXv0vr1wkrVhYPdOhyqrh9PXfPaloYKVf/8l0QLX1lDVy2+x12p6tzfeEI7N0T1yjd17u3fzmeEqs59P1QN1PFC1evNbdmQfhB4m1RXglDV+Bk57fRIE2/4G239YY9jN23dFgzWtm5ztjll3zrbJ95wpNi+7Wnd1CrVcVdIZTkDx+c+FmDl+Cv87W4oGrrvf4QAh6Bu29kjuvl12l4xwQtx89uL++H6fp+57YG6Xn+6H82+f3esgXrSfoy+4pzq/LK2IbU18R/cvx11tCjNYy+1/9tRF9HMT4jWDpfKcjig9C/OEw69/UIvFA3c9y/OExivLT850XX+NtzZ4DypuVDXN9qL++H65sXbHqjr9af70eWB/Rrb/YvZrpv55OwTmtnN2Raxb81+/O65CNSTjiPUf5Ko37FSXYn7ZE6edwAAAACQLem1QKnZvn6V2mrSsWjSa1cmPfeM82+9ZjlmK4cfUy3WicXP5YXXBMx8jaJe9/Dzc/W8m18Lrae163PP/aXXD1GKeS7emJ6HS3Oi1Co1b+NIuSeT6rJUoWr4EtexRIWqJ54US4Wqxn39jf/mt/+b5QFdx9P6hYOp67j1tPAGY/sNi9xQVdfhUFWXlVg4VP3fJrWNtODVNY0uVOVL1C8Zqb5EharCufMJoWSp2f5wS2190rF4IkPVmnaR7rvu7/TV97vp6+92O9e7AsHaV862r51tXzvlY679u9i+bU1XN1QdJJV5Bo03yq+gcSvraXhX974fWurbK8fTQN3Ow6Hk7BFdc9uc/lbWj6ALndtm+7j9tO06gmYbfXM7s89APwa7/sPnwCiLG1Ms5xe2FaltTlyomuaxl9pbharOk4tc+a20VgeOzn0zVHSfrATDQ5YXbvKTGClUjdmPG3jm+uZ2Zp+Bfjx5+3VEt4s5D6F9m+zGH+7bKIs75gT6d034wtuk+hL1ZE6YcwAAAABQAkK4U2q2r1+ltj7pWDzSa1cmPfeM86ve9fTl9zvpPy6eTYcdU03/esZg+l/nBJ/fx+LXGLHPpS+iC3UZ1zWew5u3bUNVfd7CF9vn4o3qebg0J0qsUvM2TtrsMzFU5caSpI4lHCRVn3hSLA5Vzfv8bf/hb/83yyV10meqLhzslnuhal2oTalIoWrX5bcFPPXey40yVOVL3A8Bl0ntwvgcSedOk0LJUrP94ZbaatKxaFGhahtne5S7r6miL77d5doaDNb4/hYHX4++5h9i+zandqVbZq+kcQOlMkMdh5q5FZu6fpfhbmgZ18/lHKoO75rbNnA8rZw9gro4t3PtvbKI/bjbx9Plqp67L13H5/Xp9+Ww7V/VSzumGHKAmk9qa1Kh6j+cP76CNI+91P5v/zACP7Hc0zX4Fhtd/0L+MNZ1zpOQmH6GrSP6eJbz5ERv4ycuHKo6t3PtvbKI/bjb19MwVc/dV97F61P3lbffhHZqLM4l2MYR2HeQ7fhVvbTHHIMvSb9jpXZhPLekOQcAAAAA2ZNeC5Sa7etXqa0mHYsmvXZl+c89j6G/tjxFdIRT9tveM+g3F8+mX/eaQYcfXS20j8PP8z+hmcOd59Xm82wDvzbQl7XrnNcjXr1h6z6hj7ltV6ceh6rh1wICvhT7XLwxPQ+X5kSpVWreSsKZp8YXvpbasIJDVU1qE0WFqtWtY3GoauIVquFv/5famerGrqcFN8hl1TcspHcXDJbLSsANVf/sC4eqy95c62/nUFXXy4Wq7n03VM31E3Q9rd75GF2v71//GO14ZzK1D9TRoaq5rTjmD4C+H/6h4PvhdmEqVBXOnSYFlqUWPg7pwnWktpp0LFp0qHpapNuv+Ad99s1OFaj1nvy0ooO1z77epco+/3onjXLqSe1ZLkSUyr0AUwWOufvjBrrlubbB7aZcqOpt80PV/PZR+8mFqkJZDOv+T3VXod5Sx9v5Olcnuk0c+Rd4PqltDv/BPaLqn6I0j73Unrkh3wix7Iiq7m4QyYGgcX/tcLc81za43eSGm91z23So6twOt4/azxE62JTKIuTtN0U7vsj7DrIef9UIdxVqV97O17k60W2imb+H9P3w7ya+H24X5j6Zk+cdAAAAAGRLWjFXauHniNKF60htNelYNOm1Kws/7zz8qOPol71m0359ZwX8q7Pt0GNPyaufhvl6hkNS97m2Ifx8nl+PcH0VojqvF8L3zbYC85zq++HzzPfD7UyN6Xm4NCdKLXw+pQvXkdpq0rFo0pyNIuWdJqkNswpVw5e4DuPYhqrmff62//C3/5vlkvxQdTAtMFatctkNC3LXOmSNul0MKVTtsGCoj7dNWLdAbV+z6Xm/HoeoHKzy7Q8WLKJ3rr/ZL8uTF6JyyLqT3pl8nl9HrV416lz/2E7a8dj1sbeT6B8AfTu8nS/m9ihJoaq00rPUeNw2pLY+6Vg8UaHqKW1PizR80D/p4y/dYK3lgBl+qPaJs423f/wVX++iEU49qb2LA8WVtHLcFcY2DhDH02VeGQeJajsHosb9zhxaeu3U7dkjqLPXR+fhI5z24e25oJLv59rH7+eUC91QlfuT9sX1dd3LxuWOxbp/r93s2Wa/yW2iyAFqPqmtKS5UTfPYS+1dHPg5F++JiIsDPn7i4Zb5QR8/4TDum09g1G0/IOT7s9UTl+D2YJCYax+/n/ATofC+uH44jMwPVePaOeOalTv+QNvQvlXoah6zzfi9dvxf8Nz+k9tE4d8xfNG3w9v5Ym6PwnNLmnMAAAAAkD3ptUCp8XNCG1JbTToWTXrtysLPOzlU/e3F9d4z1dzlwMvmFhWq5j2/V8+xhWDVxM+71zmvA/zXP/waxWkzK12oqm+Ht/PF3C5pTM/DpTlRanz+bEhtNelYNGnORik0+yx7qHpCdetYHKqa9/U3/pvf/m+WS3SoKpW5utPY9etpbF1rut4LT3l71O1iSKEqX/MK1VkvrlS3OVzV27UPH1lJ71x+Lb3Vtr0KVPm+Wa5wmLpzp4Pf+h8qO28yvaPKNGMlqyOrUFVLUxbG50g6d5oUSjYG0rFo0aFqTaSbLzuaPvxiJ324ZScte+UThW+zD/hale2gmy4/Wmyf44WdK7V6uuVCt0wFk3r7uBHeak2jbNwgvx8VaHp1eXWqu32QG9oqTr/D3ZWqnUPt4/YTGJ9X39xX3hjMPq36d6jgNrgtsU0k+Rd4PqltTlyomuaxl9rneGGnf8k9EVFPVPRl3ezAaspcqOje16s8+ZJ7QuKGh+7FfbKSH6rG7ycwPq++uS9zDFogGA1t9y9mOy/UVJfAE7PgvlV7c8zmbX3JG79DhbPBbYltIpi/R9OUhblP5uR5BwAAAADZklbMNQbSsWjSa1cWft7JoepvLq6nTV9TwP4D3FB1wSuficL95HjP0QPP2z3e8+7ga4Hcc3q10EF4/cCvB2xD1ajn23Flpsb0PFyaE42BdCyaNGejlDRUlUh1k6hQ9YRWsVSoKmxPpW4crTdWpooW3Ci3zZgUql6/fJx/f+Rj06lm5lV5oWpzokJV4dxpUmDZGEjHokWGqm2cH/4Ig/sfTe9v3kHvbd6prt/3r13veYY49aT2TV3nW7xQVShrDOJC1TSPvdQeimOGqo2RejInzDkAAAAAKAFxgUUjIB2LR3rtysLPOzlU/XWfelq8iQL27eeGqn/udqco3I8iLFaQuIspPqG161T6mlu9qlaqes/hvb70xWaBQxYa1fNwaU40BtKxeKQ5G0XKPZlU15QYqmbJJlRtajgw/K8//9nH4SmHqBym8n2+rUNVs15zkhSqSis9GwXpWDxRoerJp5wa6YZ+x9A1fVvStf1c14Sur+UyB9eT2jdtdTRs9koae5lU1jjwH9zD/36UKM1jL7WHYnSjGc7zs7W3SGWNA88tac4BAAAAQPakcKcxkI5Fk167svDzzsP+cSz9qs8cuu7RHwN+d/EcOqTlyXTIP08UhftpKhrT83BpTjQG0rFo0pzNWtlD1eNPaNWsqFD1v/7s4/A0ilmvOeFzJJ07TQolGwPpWLRCQlWQuGGq+5b9gUJ548F/cA878h/QYHSlGfrf2euGC+WNB0JVAAAAgPKRgp/GQDoWTXrtysLPO/9adQz9tsd0+o/eswJ42yFHt86r39QhVC096Vg0ac5mrfyh6vEnNivhUBXyqVBVOHeaFFg2BtKxaFGh6kknt4VmCqEqlArPLWnOAQAAAED2pHCnMZCORZNeuzLpuSfkNKbn4dKcaAykY9GkOZs1hKol5oaq/wUxkkJVaaVnoyAdiyc6VG0DzRRCVSgV98mcPO8AAAAAIFsnn8IBVeMjHYsmvXZl0nNPyGlMz8OlOdEYSMeiSXM2a2UPVY877sRmBaFqMj5H0rnTpFCyMZCORYsMVU9yfvihWeI/uH/9WxVA5tSTOWHOAQAAAEAJCCvmGgXpWDzSa1cmPfeEnEb1PFyaE42BdCweac5mreyhKgdozY0UJEKOdM6auqhQlX/pQvMl/SEGKJY01wAAAAAAbEmvXZn03BNypHMJ5SPN2ayVPVSVQjWA5iYqVJV+EQMAAAAAAABUivTalUl1ARoKac5mDaEqQAUgVAUAAAAAAIDGQHrtyqS6AA2FNGezhlAVoAIQqgIAAAAAAEBjIL12ZVJdgIZCmrNZQ6gKUAFJoeoBBxyQyj777FNy5doPAAAAAAAA5PBl69atRQm/hrSRFE7pcoCGSJqzWRND1bNqzy9IuJ8whKoALoSqAAAAAAAAYAOhKkB60pzNWl6o2qFLHV03agZdc9t0unLEgzRo2GS67KZJ1H/wRLr0+vF08bVjqddVY6jHFfdQt8vvoroBd1DnfqPowv7OdbeLAp2HIVRtuH71q19R7969xTLIHkJVAAAAAAAAsIFQFSA9ac5K2rZtay3cVgxVbxo9h+6cOJ/umbyYxj64jG4bO58mzlhJ0+Y/QTMWr6X6pc/S/Eeep8WrX6ZlT7xOK9e+RX2uGYtQNYVn/m3/SFL9UksTqi5+5VG6fOnFdOLo1nTKXRdQzZgLaPDyUbR609Ni/TSeWLMmklS/IXls6XCfVG5CqAoAAAAAAAA2EKpCKS196mk664Zpyoqn14l1GiNpzko4LHV+RBJZh6rn9xlBHS+5jTpdOpI697udLhxwB3W97E7qPvButUK151X3Uu+r71OrVnn1ar8bJ1C/wRPLGqqWMmgrR4jH4enmS66gr0eOofd+f4i65vu2oeqMiT0LIvXFbEPVW1bdSzX3nUs3v3AwzXtvAI197BIa88hg6v9QDzpzbCea/uICsZ0NPucPzZ9Bi1bOpOdefooef3olPbV+DS1ZuZhmLJhV8sekWKseHkG7du9VpHITQlUAAAAAAACwgVC14bly1lT692HXKK1GD1f3pXpJfvE/+1LfcZUNMnWYyg6sGyPWaYykOSvJPFS9duRD6odWX557aRP9sG27d0++cNBarlCVw7Xdu3cqWQdtpezbxOEpB6l82TzgWnXN921D1Wnje9OLX++JxSFq+L7UF7MJVddueo7ajD6bbllyKT2y8SHa9fNWmvR6Zxq8pJbuXnElDXO2nzb2fHrzk01i+zh8rh+cM41WrllOG995g3bv2UVPPLOSlj66kB5/epXazoFrKR+TYq1YNFIFqjNfWCaWmyoXqrag6to6qquroSqxPFq6/RTrKJp2YA9698AzqIdY3kCcfA+t2ryD3vKsGtVGridoNepNv91bm5dSd6FOnGLb22lDNz1byv4BAAAAACAJX6SgNI3wa0gbSeGULk/rnXfeoWeffZaeeuopdc33pXppTV/4pDWpfZzT7lgVuM9hqg5SdbBqlqdhBquLn3uVhix4mfpNXk99xj+prvk+bw+3ywoHqU1phaomzVkJh6VfffWTuj733HPpoou605VXXkmjRo6iqVOm0JIli/3ycFsxVL1qxIO0/vk3fdPnPUaPr305sC2MV7CWI1TlUG3Xru2GHZkFbdzPzh0/una6ShXicXjKK1R1oMrXfN82VJ089mIVlH7y9c5I9945UNVpe+lUemTd++q+1BezCVW7zOhHF9xfSwMe6kSPv/6EGvce2k73v96Fuj94MvWd1oUufrAzXbbwBrF9HD7PcxbX08Ll8+m9D99Tff/001568tlHqX7RDFq0fAEtXDa/6Mfj8ccftya1j/Pwgttp56699PexXcRyU0VC1aoaqqurpepqvkaoWrQ+S1WgOaVPblurUfekDx9VP0WElkW0V8Hss/dQK6HMhVAVAAAAAKDS+CIFpVqXLl3E7abwa0gbSeGULk+DA1QOU99++22F7z/33HP06aefivXT4LD09R8oUSGh6tm3LRa3s2JDVaaD1elPf0AjH/+Exqz7nKa8+LW6HvroRzTwoRdpzKOlCVaHTnlYrVblcJU/CkCq0xhJc1bCYennn+/2bd68x7neQ5v9++61dajKX061fccu39PPvUFffr01sC3sokGjyxaq7tj+g7L9x+/VdRbBJ/ex7YdvRVn0H1ZsqDrh3n4qMP3sm52Rrh58s6rz/fa9jj3qvtQXswlVjx91Gp1/99l09h3taNlLy9S4+fIz7aR57wyiix88jy6edgnV3NdZbB+Hz/HM+TNo+pxptOndTV7PbrD63MtP0/ylc2nJyiVFPxYclm7euDFRIaHqwnl30fadexroStUqqtFBqgpXEaoWxw0b06xMjdSgQ1UAAAAAAKg0vkhBKeNAVZPKtfBrSBtJ4ZQuT4NXpq5bt87HgepG5zX4V199RW+++SY9/fTTtGrVKnXN96U+ouhQ9bYx9dakfiRmqMorVDlE1WFqFqHq6x997Aerj77/Az23eTs99/mPtIGvv9hBI578nHo/+AKtfuU1sX2UNB8vUOzb//stvJn+240n00H3dFK3pTq2svhYBGnOSjgs/fCj7bErVT/8aId9qNp/6P306sYPfHOXPk3PvvRWYFtY14F3ly1UzTr05PZbv/nC9+03m+nbr116W7H7COPwtJi3/8+ZeYcKTDdv3RWp56C780h9MZtQ9bCbTqGjrmhJRw46iuY+O1eNWV+ee+dpajP8n3Tu3V2penQnsX0cPr/3TbqP7r1/DL2+8XWvV/fy0Scf0v3TJ9DM+cV/rqoOVdcvXx6p0FB1bv09tG37Htq2Y49YbqrISlUtk1DVCz0PaE3D/sThp2vavrn6PQ7IbZfKlX3PCNXRIWo4VNX3e9Ca/Q9SbRP7/0NrWhMqVw44yqtzUGDs7x7YkYb9wWgfR73t/0266WShzNB9jn57fsxqTzEUdUNbcxWsqicFoDGhatT+gx8dYModU/LHC+hVrFIdPf7+NMUvl87XAJr92W76bP0YOimwHQAAAAAANL5IQakZqCYFq+HXkDaSwildngavUl22bJlvjfMaf9OmTSpA5TCVrzV9X+pHYoaq5srUKIWGqjpI1fezCFWvrn+R5r62xQ8T+fKzY8fen9V1l+Uf0+UPv63qSe3jJAWU+u3/jFesSnWStJl8KXWefTkteeV+Grv2TnWbt0l1bRUbrEpzVsJh6dtv/0Cb3t6mrmXb7EPVvjeOpy1fbfWtevIl+uCjzYFtYfxFVuUKVbd+u4W+MxQTtHHbL7/4SNmy+UP/tk9vc66LDfRMHJ4W80VVK5bNpA+3/UTfbd8bsOW73b6LBw2laQvW07SF6xS+L/XFbELVg246kQ654W/05+sOo7nP5ULV5a+uoL/ddAwdcq0zacd3oOp7Oojt4/C5vfeBMTT6/nvo9bdyoerb771NY6eOo3vuv5dmLswmVN340ku0fsHySFxeSKg6c+Z9zmOwu4F/pqojy1A1Ty6YlEJPc+Vpq/07xpSboWou/EwKbXPtvTZ/au2FkDoE1oFq8vhiWawO5VDSDEVVwGkdihYfqtrs32qlasz43prT39/mhrC6ng5cc0GqfPwIVQEAAAAAkvAlHJKGg9Tw/bDwa0gbSeGULk/jySefpCeeeEKtUuVVq2+88QZ9+eWX9MILL9DatWtVOQetGteV+pGEQ9WvdsfLIlTVX1hVbKhaO/Zp6vTwezTi+S/9MHHS69/S7yZupIOnvU1H1b9LXVZ8qOpJ7ZPoPsePH0/Dht1MkybdT88/t0aV8dv/OVjlQLWQt/9fvGAonTujH9W/OM4wVm27eMEQsY2tuHEnkeashMPSV1/9Nnal6quvbbUPVftcM5Y+3fyVb8Wa5+nt9z8JbAu7cMAdZQtVv/7y04BigjZuqy2c+wB99vGmAN5m1pH6kPzvh14aics5PI0S7kvy5FMr6ZmlI2jNpCrl5TUTaNuOvcrXP+xW7pzwEH34xQ7HTvrAwfelvphNqDpgwQ109KiT6cQ7T6EFLyxUv9iXvrKcWo06lVrecSKtfec5Ov7uM+nG5beL7ePwuX3z7Y301rtv0bdbv1V9b/1uK731zls0aeYD9M4H79Dk2VNTPQaSXKi6IFKhoerU6RNo67bdDfczVbVMQ9X8EFWvJA3Swaiunwtl81avKrlQdVpsv1pE/1Ghql7F6pfnxi+PJ8QiVM2TKhQtPlTNI7QvOFRVK3XD+3RXpbpjTjF+AAAAAACIpV4fh0JSKUBtDKHqBx98QBs2bKCPP/6YtmzZosb2448/0rvvvqtC1eXLl9MC53X5vHnzFF6tKvUjCYeq3+yJV2ioar79XweqxQartfeuoSPmf0D/25jXadY73/thIq9S/Z8TN9J/u+91Vc71pPZJnnt2jd8nf+TC/Pnz6e6776bnnimsPxO/5X/IqiF00+qbch67SW3jMqmNrWLGLc1ZCYelGzZ8SRuedz3v3Fb4tr7vXFuHqj2vvJfeevcT38IV6+ml198NbAvr0v/2koWqZqg5e/o42rL5gwDeZtaR+rDBbT96//WAQvvj8LRd/yl0xuUP0YkX3aWu+b4OVYv1xOzLaN20VvTD1x8qfPuVx++hH3f9pGz9cQ/dNvYhen/zDuW9zTvptvuKC1Xf+uxtOnr0aXTy2FNp+SvL1ArVo4YfQ38f+U8VqC4Y+ht1rW8zqR8Jn+enFi0Wfff9dzR/5gR6+/13/Me40MdFharr19PjMxdEUuUFhKqTpk6ir79vZitVjVBSv5XfDz/Ft99HhZ5hOlQNtzPE9r+PsBLWWIWa97EDOfahasLb/1XwyKs1DeUMVS32X3ComjhmhKoAAAAAAFmJClXD2+K2h19D2kgKp3R5Wj/88IMKyBYtWkQzZ85U13z/s88+U4Hro48+6n88wMqVK8U+JOFQ9bs98QoNVUuh5p6n6Ni579H/GL+Rpmzcqh5zHSZe8uTn9L8mbFTlXE9qn2Ts2LE0a9Ysv8/HHnuMZs+eTfeNvU+sn8Z/3Ho21c3uR/0XDvIMVNe8jcukNraKGbc0ZyUclj799OexK1V1ebitGKp2G3g37dq127duwxv09TffBbaFdeo7qqSh6mcfv22l0LCNcdsP3nk5oND+ODzlIJUvpw+Yoq75fhah6hvPLaKld+9H77w4R/XLl7deelRt+/SDF2nH7p/ohx176abRD6nPXf38m93KTaNniP0xm1CVPfjCXKq+7xy6YFpP6jCtK509uaMfov7807fq+sedP6rrnTs3WwerfJ5fW7eePtz4Fm14dJW65vscqr7/zpu0e/dO/7Hg6x07fizoseGw9CXH484v7iiqvIBQdewDU2nL1l205btdYrmp6YWqobfo68Az7/NL069U7eGHp0Yoatl/5OpW3T4y1E3irsqM/qIqoTxVKFpsqGq3/2xDVaxUBQAAAAAoBb5IQWka4deQNpLCKV2eFgeoHKY+88wzPr7P23klK38sAL/1n1eqFvOZqv+f1ldHShuqdrx5urhdu731PSKpruSK2S9Qpzlv0QlzPqSFb3+vHvOeqz7xw8Sbn/2Szp/5uqontU/Sd9BNKpxcsmSJ3yeHk7xdqp9G55lX07FjO9PwFYNp+PLBNMLBt4+9r4sqk9rYKmbc0pyVcFi6evVHjo8juGXWoSq/lX/thjd80+auptVPvxTYFnbBpbeV9O3/HKB98uGbsQoJ2UzcPstQlVeo6kCVr/l+FqHq0wuuoxnX/4d6+z/fZnybt/HtXXt+ou279tI1o2bQNSNn0LXMuy31x2xDVcYh6uVLhtKx955LJ9/T2Q9VOUTduXWBuq3vb/1gplWwyueZg1S+vPPyK+qa7+tQlUPULV+4n2vLq1b5/qcfuytXpf6ilHKl6j0Tp9Pn3+5q5p+p6gWf4ipSFreSlOng1AhVzbo6BE3qP6pcCIGDjOA2gfsZosHgsNWoe7ygMRxquvfThqr+Z5bqVacFh6oR+1dtE1bcxvRvfqZq8DNTbUNV7zNVP1tBvQPbAQAAAABA44sUlKYRfg1pIymc0uVp8cpU/fZ+E7+1+5NPPqHVq1erVappAlUWDlW3/yR/QZWWJlTtfl18QGqGqA9dNTt1qMrf6t/h/g3Ua/nHNHfT9/SVM/hRz31Jd27IfcbqHY++k/rb/zX+PNLRo0dTfX29CrB1n7xdqp/W8eN6UJsJ3em+VcNpyMM3qNu8TaqbRjHjluashMPSZcveT2Qdqnbocyt1u/xO34X9b6eul90R2BZ2fp8R1Llbr0DnYcWEqowDtI/ee01UaPhp4j4aQ6i65I4/0t4P76CffniB3nrqFtr22VLn9nO097MHVNmen35SweqAW2aolaragGHZhKoSFaJ+MFyFqmFbN95IC679pdhO4/PMK1R1oMrXfJ9DVfW4vPuKClXD3t74fKrHSIWq/JmpCxZEKvQzVe8YP5M+/WZnA/1M1RZUXVtHdXVhtVTdQqqfL7gfIVQNrfoMfhHUGTRMBaO5UJVFv0U/GKoG+vP2k9S/HNqaq1elYNU+VGU6WNXMlaHBsjfpplFmqOiFpkZbv54OOANv319K3QOhZHL7+P3nqDA0r73F+HSwqgX6tg1V29Jt6zlU3U2ze5vbAQAAAABA44sUlKYRfg1pIymc0uVpcTjGQVkYb5fq2wqHqrt+ipcmVE1aGclBqr5OG6hqty1/hbpNfp5ueHgT3bV+C9345Jd03erPaMErX/hhotTOxnPPPK6OYfLkB9Sqz4kTJxbdZ1iv+hvUZ6j+1x3nq9tSnbSKGbc0ZyUcls6d+5YyZ45D33bwRwCwuc52q1D1zPbnUc++l1Pvvpelwm3Oqu0Q6Dys2FCVZRl8hmXZN4enpXr7/8Lb/kA/fb+Oftr6BD00ooqWjzuRfvp2Fe39bLJb9tPPtHfvz9T7xpkqTG176VR6ZN37zv3Shaps1sBf0s6NV9LOzWODnG1cJrXR+DxLoao+/3z9zsYN9MlHGwN4W5rHiMPSzRs3JiokVB1532z6+KudDX+laoGC+/FCz1CQ2mCEP981ahtUXu8VCFUBAAAAAGLwRQpK0wi/hrSRFE7p8rSmTZtGDzzwQB7eLtW3xaEq06Hqbue8xbEJVTnQC5PqMR2o6oC1EAuefZUGz32BLhy3jrqPfYoumrCehjj3N7zzUdEh6IZnH1crPPkY+Po5537WwWopRI1bqmuS5mwUDk5nzXozgLeZ5VahaillEaoyDtGKDT2jZNU3h6el+qKqecN+Tz99/wx9+vK9dGWHf1H49t7PJrllP/+s1F3rhqo7d//k+Jm6Ovel/lgWoSqbcun/9O3ceCPtfKmLui3VNfG5lt7+bz4GfJvNnHIvvbfpRXrj5adSP0YcltqS2scZNXYWfbRlJ3345U6x3IRQtbT0KlUzQHW3BVfKQqV5K1XXj6GTxHIAAAAAAOCLFJSmEX4NaSMpnNLlafFnp/LKVPOt/3yft0v109Kh6l7nvMWxXalac/4FKtDja6mcSStUiwlXo5QiBG0MwWohpDkbR69K1aQ6YY0yVGU6YJPKipVF3xyeRpHqp1E/9Pe09c3bae8n42njqksUvv3jpuGqbO4jr9DYWevo+tErqNOVMwOk/lhWoao2vuf/VIEqX0vlYXy+w19UtemFF8XHgbcVEqiWAwerH2zZIZaZEKqWXvDjARgC1QbFW6GKQBUAAAAAIB5fnn/++YI1tFCVcYA6efJkFabydVaBKuOw1JbUXhIXqDIpUC1FqMoQrNqR5mzWGm2o2pzpL6qScJnUJkkpQlXbQJVxQBolqm54e0OxeN1n4nZT4w9VAQAAAAAAoByaYqja1OhQ1VyxaoasUH7SnM0aQlVQsg5VIR5CVQAAAAAAALCBUBUgPWnOZg2hKkAFIFQFAAAAAAAAGwhVAdKT5mzWEKoCVABCVQAAAAAAALCBUBUgPWnOZg2hKkAFIFQFAAAAAAAAGwhVAdKT5mzWEKoCVABCVQAAAAAAALCBUBUgPWnOZg2hKkAFVCZUraKaujqq02qqhDrR7PcDAAAAAAAAWUGoCpCeNGezhlAVoALKH6q2oOraOqqp0vfdgLW2uoVRJ57dfgAAAAAAACBLCFUB0pPmbNYQqgJUQGVWqgZV1dRRXW01tRDKJIXuBwAAAAAAAAqHUBUgPWnOZu2IU9sjVAUoN4SqAAAAAAAAYAOhKkB60pzN2nGd+iBUBSi3yoeqePs/AAAAAABAY4BQFSA9ac5mDaEqQAVUNlR1P1+1rq6GqsRyWfr9AAAAAAAAQLEQqgKkJ83ZrB1xKj5TFaDsKhmqqrf919VSdQu5PEra/QAAAAAAAEDxEKoCpCfN2aw1yi+q6tmzpxWpLUBDUKlQtUV1bUGBKkuzHwAAAAAAAMhGUw5VpSxHIrUFiCPN2aw12m//5x+qqAuXSW0AGopKhKrFBKrMdj8AAAAAAACQHb5IYamthr5SNSnfkdoAJJHmbNYabajKpB88BKrQGJQ/VHW/mKpOUFMl1c9ntx8AAAAAAADIEl+ksNRWY3j7f1S+I9UFsCHN2aw16lCVmT94CFShsajEStVilWs/AAAAAAAAkMMXKSy11Vg+UzWc70h1AGxJczZrjT5UZfzDhkAVGhOEqgAAAAAAAGCDL1JYaqsxfVGVznekMoA0pDmbtSYRqgI0NghVAQAAAAAAwEZzClUBsiLN2awhVAWoAISqAAAAAAAAYAOhKkB60pzNGkJVgApAqAoAAAAAAAA2EKoCpCfN2awhVAWoAISqAAAAAAAAYAOhKkB60pzNGkJVgApAqAoAAAAAAAA2EKoCpCfN2awhVAWoAISqAAAAAAAAYAOhKkB60pzNGkJVgApAqAoAAAAAAAA2EKoCpCfN2awhVAWogEqEqi2qa6muri6npkqsF8V2PwAAAAAAAJAdhKoA6UlzNmsIVQEqoPIrVauopq6OaqqkMllh+wEAAAAAAIBiIFQFSE+as1lDqApQAZUPVVtQdW0d1Va3EMpkhe0HAAAAAAAAioFQFSA9ac5mDaEqQAVUPFRtUU21dbVU3UIoi1DQfgAAAAAAAKAoCFUB0pPmbNYqFqoeetjfoBk5BJRKh6pVNbnPVE2zSpWl2Q8AAAAAAABko6GHqocccghAg5E0b7OEUBXKQgoYm6NKh6o57tv/03xZVWH7AQAAAAAAgGIgVAWwlzRvs4RQFcpCChibo4YTqjqqaqiuroaqpDJBwfsBAAAAAACAgiFUBbCXNG+z1EBC1Q408IVNNPAcc1sjdM79dP/mHXT/6A65bQMfDd4XXUcjNj9KncSyeCeP3kQLnX0qL9xPJwt1Cj6/ztgXLrzOvS5wfJoUMDZHDS5Ura2mFlKZoOD9AAAAAAAAQMEQqgLYS5q3WapYqBoIA5NEhoUcRup6caFhRD0VFurtOX4I6oWk7vbo/jst1HWE4NEqVHXwviKPMxSemjj0FOrn0QGpVBaFx6TbmLcLIAWMzVHDCVWrqCbl56oWth8AAAAAAAAoBkLVdDp3PlbcXm6HHtqLJm6YSL0OPVQs12zrhR1aM5SWbFhCQ2vStWvqkuZtlhrESlUOJUcMDIZwyXj1pRGARq6mtK3nUCGqLnODWH9c3C4m9MxbbapDTOda7Vvf9+sKAWmYEWJyqGp9jtQxCv0JdJ/WIXeBwaoUMDZHlQtVvc9Q9b6kitVUSfWi2e0HAAAAAAAAsoRQNdqiRXfT9Ok3B9xwQ+e8bVxPam/LDT430AZtYi+xngmhamUkzdssVT5UzVuhGQonowQCUOaGp3nBo209B4e7gfA1MK6ot9C7/YWDRz8o1qGqU9c6PFahaHBfqUJPY59xzKBWDG2LXJ1qkgLG5qhyoWrxyrUfAAAAAAAAyEGoGo0D09Wr7qcnn3xQ4fCUQ9XwNq4ntbdxaK+JKkid2CsXXvK2JUNrAvXCsg5VDz20hoYuCY4D8iXN2yxVOFSVAk7LUJWDx1DgFwhFNdt64fCV2+WFqjGhqApCdXvjGMyAMy9AFqh+8sPbVCtVmToeIXQ1mP3J/TvH4Y/X8nGJIAWMzRFCVQAAAAAAAEgDoWq0B6cOVcHpd988Qa+8sohWrBinQtXwNq4ntU+iV6gWEmQiVK2MpHmbpYqGqu7qSw7qOLCTg7+ozzJVbS3CUtt6edu8UNIPGlXYGR2qcnt3vM7xcF29TzNUTeD2IQeXqUPVlNzHQh+DQ4WpuVCVy22PQyIFjM0RQlUAAAAAAABIA6FqtEkP3KACVA5Pw6GquY3rSe2TqFWqS4ZSTUzg6b4NP/fRADr0NMNSt04uODXvh0NVqT8d7uptakzhPsN18sqW0NCh7qpblrTStrFKmrdZqlyo6q+kDIeIlisizeDSI4WldvV4n0J46wWpOmQcuFAOeN0VqJvcla7h1ahGqMr7lYNRL1QOjdOkQ9W88NPktY+tEyKOzT8GXp3rHZPNYxJDChibI4SqAAAAAAAAkAZC1WgTxl+t3t7PwSnj2/xFVeFtXE9qnyQpVFWrRyfmyt2PCnDDzEJC1fj+gitV8/sIBqX5Y9ngfxas27Zpfh5r0rzNUsVC1U4qoJQC1BShqhleRr0936ZeXh1J9LjcQDJ+3JErPb3gVg5bc9zzldCPFMqa2zkcFYNbPidGYGwEw3xsNuNLIgWMzRFCVQAAAAAAAEgDoaqMw1NelWribZpUJvUTx2alKqsZusRfAVpMqBrfX0yoKozTrO/uIxeiumUIVYtV4c9ULSJUDYejZjCqVlbqkDCmnid/5Wq+6DpO/wu5v/jQNS/w9MLU5DCX5fpOG6q6ga93Pxyq+uciNHajr+DYnXqqvntO04StUsDYHCFUBQAAAAAAgDQQqka7664BeV9KxeFpeBvXk9onCYeReeUq2MytEI0KS21D1fj+CglV3bEjVC2NRhyqOlR46oZ7gY8RCISqMfUU3p8UDuaCQ5YUukrjVoGk1LcKVB+lgd7b9JOCSfV2fi/YjH1rfyBU9cZvbpNCVb5vXnt98ZjU+F94lEboUFq31/XD/cWQAsbmCKEqAAAAAAAApIFQNdrIkZeo4DTpi6q4ntTehrtqNBhAcojJwWc4zHTrekFnXlia6yOyXmx/MaGq6kN4+7/XF0LV0mgQoeoIL3yMZLWas9J0qOqGtDzuqLC008JwABw6XtPC+0l9rqlX32alqhvmGqGyLzc2zQ1P8+sGV6jmAmZ331ipWiiEqgAAAAAAAJAGQtVow4f3VAGq+aVUOlQ1t3E9qb0tFVD6b8d36M8m9YJOvX3JxImhoNO9zXXNt/RH1YvrL9AHh6VGqOqOxQ1WdVsdxubKEKpmrcKhKjQXUsDYHCFUBQAAAAAAgDQQqka7+ebueV9KxaFqeBvXk9pD05M0b7OEUBXKQgoYm6OGEaq2oOraOqqrq6XqFlK5TN7PUTTtwB707oEdadgfwmWQle5zdtBbm5dSd6GsOG3opmez77vVqDedPrnffKtGtRHbAAAAAACADKFqtOnTb6YhQ+oCOFQNb+N6UntoepLmbZYQqkJZSAFjc9QQQtUW1bVUV1tLtc0gVO1xAI+tB03bVy5vLCoVqqpw9Nl7qJVQZkuNfU5/saxYWYwPAAAAAKChQ6iaTiHf8g9NR9K8zVLFQtXJkycDNDuVD1WrqEaFqfpaqiNLt5+GoamEqpWCUBUAAAAAoPIQqgLYS5q3WapYqIoLLs3xUulQtaqmjupqqpzbxYeqOrB0BVeqqrI/nUHT/uSWr9m/tbeiVQec3grXA1rTMK9Orkw7KFAW3IcuO4N6+KtlHQccpcpb7d/RaGdKs6JWr+LUgqs5VaDHYWGfpX6d4Fvbw+2lOlGktub+3fIpfYw2PA4/YNTl/WmK3/5NuunkXH01frHvcJkp2IeNuFDVXYHrEcLRQLlDH6/9+AbQ7M9202frx9BJ/jYAAAAAgMaFL1JYaguhKjQnSfM2SxULVaUfWICmrqKhaotqqq2roSp1vwyhaiDMNKjg0whCA3Q/SeU6VO1IawLBqxvMFh+qeqGmEQa6QV4ufPSDPR0GnnwPrTJCvWCY6PZX8OeJquA2fahqhoxqPNKqzry+c9QxSm1SiApVw9vD47PZd3IdhKoAAAAA0PghVAWwlzRvs4RQFaCMKhequl9OVVvdwruf3dv/3QBVDlU54MyV69WpZqiaa6fbrNn/INpn3zPUbb3yNK88sIqVV6vu4wepbnn+OPQ2KyogDQeN7qrP4GpJs45ZHqzr149YsZmowFA1ujy0veyhKp+f0KrSUCjtnt/wytOgLMYHAAAAANDQIVQFsJc0b7OEUBWgjCoWqlbVUF1tNbXwt5UjVHXDTnX7T62plQ5CzVBVbffaeUEqh6I6IA2EoUa5GarGBaYFh6pi0BgMKpNC0mCY6LYt90rVBhuqqgDV2Z4nGKK6wapXJowDoSoAAAAANAcIVQHsJc3bLCFUBSijSoWq6rNU6yLUVottwqL2k02oGgpJrVeqBvcblm2oKqxUTQpV/bDQEVM3UZMMVeNXoQa5xxPuB6EqAAAAADQHCFXjPf/Ra3TBpP7U9u4u9I9hp1ObOzup+7xdqg9NW9K8zRJCVYAyqlSomq/Ylarxn3lqHarmcdskl9uFqvmfrRpfP8cNUM0QT4WDRoAXH6oKb2+XnDSG1vNnfn62gnpL5VpEqOrvX6/8zDhUdctijsNi/GKoGhGSxhH7SRqf/kzVpPMLAAAAANCAIVSNNvjhu1WQ2nNaX7pi3pU+vn/4kBpVLrWDpitp3mYJoSpAGSFUdW5HharmRwGwP7SmNYE6OlBldqFq/n5sQ1XmBataKJBMWqmqys32Qh+Fh6qOwFvonbJAaJoUqnqhpjk2JT+gDK64DZUXHKoyYQzG+QnuN1hmih3fPm3ptvU8vt00u7e5HQAAAACg8UCoKuPA9LAbT6LBi6+jBS/V0xPvPEZr33tSXU9eN4FuXHwj7TeoZcWC1UMP7UUTN0ykXoceKpYnKbZ9c5U0b7OEUBWgjBpOqJpetvvxws5wkNpUiG9vd0Pagj5XVQpVwU7vFQhVAQAAAKBRQ6iaj9/azytUr5p3Ba3etFKdo/Dl0bdW0DULr1YrVov9KAA34NxAG7SJvcR6poYYqvaaaBxDyuNpLJLmbZYQqgKUEUJVrYmHqtLb0r2VpYHVo5H6001++Jr+rfKgeStV14+hk8RyAAAAAICGjy9SWGqrKYaq50/oRxdO7kEPrBuvzg9fVm5cRnetHkmLX1mg7n/47Qd0y/KbVb2uU68Q+7FxaK+JKnic2CsXbvK2JUNrAvXCyhWqHnpoDQ1dEhxfkqwC20L2XWpJ8zZLCFUBygihqtbEQ1VH3tvXrQNVV+DjAyLe+g4xvBWqCFQBAAAAoLHjixSW2mrooeof//hHuuKKdKFn6zs60ZljOtGktVPU+Xlny7vUZdJFvkse6kc9pvZWzht3oaov9ZPEDR8LCw0RqlZG0rzN0hGntkeoClAuCFUBAAAAAAAgDb5IYamthhyqcqD63//7f6f/8//8P8XyKPyW/kOvb013rHZXqj757jN08HWt6KBrT1T49uGDT6Ejb2pDLYe3c263FftJolapLhlKNTHh46E1Q2mJ8VZ6HTCGg0sd0Op6vNLVbWvUMe7ntRf2E+5Tj1XaF/ehhfsObpfb1Qxd4m/foNrK+zb7q4SkeZul4zr1QagKUC4IVQEAAAAAACANvkhhqa2GGqrqQLV9+/apQ1VeefrPW9rRFfNuUefno28/pWNHnEktbzldmfrMPKp/cTHVTryETrqjtvCVqgmhqlqpOTFX7n5UQH4oqsPKvHDTMlSN309wtajbbgkNrdH381eTmn0Ht8ntwuPMtcnvu9KS5m2WEKoClBFCVQAAAAAAAEiDL1JYaqshhqpmoHreeeelDlX5M1JbDj+dOk3sTd/t+F6do0c3PkF9ZlxNt69yV69u3fEdXeCUnzmmC108c7DYTxKblaosfxVnKBSN6Mc2VNX15f2EQlUVuOo6OWagK4aqMe3c+nw/F7q6/TTvUPWIU/GZqgBlg1AVAAAAAAAA0uCLFJbaamihajhQLSRU3fjFu7TfoJZ09n0X0lXzBtOmLe+q86Qvn323mUY+Oppqx3VT9Qr99v/w6s28chWC5gLLyJWmRYaq8fsRQtWEIDgyVE1s5+5Lh6vNPVRt+F9UdXRXGj7odO/+0dR1+DgaN04yiE4PtD2dBqltfG1TP+forsNp0OlyGY9nUNejnds8FrcPv/7pg2icP9aGh8c5XI3d28bndnhXOjp8W9Hnz71/+iDpHDoCbRoQ57EIHKt6vIZT16ONOl693PEE58Tpg4T6gtj5EoJQFQAAAAAAANLgixSW2mpooSp/KRWHqKa0X1TFrl98Jx18bWtqfXt76jK5F1276Ca6eflIdc3324/rRkcObafqSe1tuatDQys0e7nf/h8OIt26QiiqbhvBp3N/KLdX4Wiu78j2sfsJhaqhfbFeE926+r7Zd3Cb3I7HOdTvP7c/hKqNYKVqmtBK4xDQqo0YvkUHrswdj1uvqxFUFjLOQj3zb/tHkuqzvJAwNlQNbhPPp9QmY//7oZdGkur7wo9r1Fj9eqfTIKf8dOcxDITGBlWvgPliQqgKAAAAAAAAaTS1UDVLKjC9rjWdOaaOzh3fjc4d53Cu+T5vLzZQ1VSoucF4W/zEXu52f+Wma8nEieJKU1XXW23q1s1tN9/SH9U+bj+BPrzgNbiv/NAzPDZ/e0y7XhNz2/Xxs/C+9fZKSZq3WWoUoWra4IoDwGDwFS9QP7ByMYhDRQ5O5TJhRWwJA0cOTzdfcgV9PXIMvff7Q9Q1348OVc3xDadBgxLCw1D7Sq1U5fC0Xf8pdMblD9GJF92lrvl+VKgqrmR2xthVGj+vKtYhqRmWBgLY4IpdZjtfdH1TJUPVFtW1VFdXF1Bb3UKsK7HdDwAAAAAAAGQHoWo8fmv/2WN703EjaumE285X1x0n9i/4Lf/QuCXN2yw1klDVFRnsaYNOV6GnDrxs376dC235WmqTH+qe3nUQDeIAzwvfVNgaE8RljcNTDlL5snnAteqa70eFquZ58ZnhYRlWnRaCw1MOUvly+oAp6prvp1qpysfmzA9/pS3f1x/ToOqd7j6+MQGpSz+mdvMluM1V8VC1pkoss2G7HwAAAAAAAMgOX6Sw1FZTD1UBTEnzNksNPlT1g9TAZ5VyaBkfmOoQMTaIDX/+KYdqepsRMgYDSQ7MOKDzgjUdyg3ikNUL3RICSjWm8L5T4vCUV6jqQJWv+X5UqMoB83C9itMZpwqEw+dDM8rVcXuhZF49T9RHHmRxnBye8gpVHajyNd9PE6qqcL2rEbIaZe7trrkQ3JwDPh2imtscZt3I+RKEUBUAAAAAAADS4IsUltpCqArNSdK8zVLjWKlqrix0mKEVB3fiZ31GrBSNCrzyVrVyYCYEo7l6OmhzrgfpMG2QW2aGdoJKhKqKGBjGEI/jdPXZo1GBsamhhKqu3LgDc0bXM66l4DjxS6y4ncV5QagKAAAAAAAAafBFCkttIVSF5iRp3mapEYaq4VAv9FZ7f1VlilA1FNoyVW+4F5Ia210cqAorZTlYc/oRg96McXia5u3/wc8a5XPD583c5jHPrRc08rnIq2eyDFkLweFpqrf/C6Go+1h4j9npocDdO0Z/XnmPYbDf0ErV1PMlp+KhqvmZqrXV1EKoF8V2PwAAAAAAAJAdvkhhqS2EqtCcJM3bLDW6UNVfDercVishdXjmlbsrCENBq0EKVfNWHfL+VFDo9BMKzwL71PxQkcM3837pcHia7ouqHIHA0AsRA3VC2/zAMVeHz9+gQV0Tw8OscHia5ouqwmNW4zVWpfLjFTgmXV8/5l6dfLn5lGa+hFUyVA2qopqUwWph+wEAAAAAAIBiIFQFsJc0b7PUyEJVDktzQZe5GjQYdHE9y1A1Lzjktrm+8urzWPy+3RA1Nw5vfAmhahZvi+fwNIpUX+HA0AxVjXPpE0LV07t62/zwMLRyM0IWx8nhaRSpfvjxNENVvs3HGH789bEH50EokNXSzpeQhhOqOqpqqK6uhqqkMkHB+wEAAAAAAICCIVQtH/2aHRqvpHmbpYYfqqoQUw69otmGqqFwUAVsoVWIjvxwMBRIcpkXznEIp8K7mGA1i7CxIDxGXmWqjtk5hrwxhrZ5x6TOl7ptnCvvcckLHQ0VOU5vzCb3S8Wc234gbIzLqe/PB2OuyZy5U9B8ydHzvyGEqu7HASBUBQAAAAAAaMgQqpYPv14/+OCDoRFLmrdZavChqrkCVYVVYtjl8YOscKhqhqD5IRhLCgBVUOqUu2MI9REOHPW2mGC1EtQx+GMPBcOaMWY+Vg5No8+NGVaGyyrEDEk9PH5pmzomob7G5ysqNI4+Jy5uK21vMKFqi2qqrauj2uoWcrmgoP0AAAAAAABAURCqlg9C1cYvad5mqXG8/R+giahkqFpVY3xJlaOmSq4XxXY/AAAAAAAAkB2EquWDULXxS5q3WUKoClBGlQxVi1Wu/QAAAAAAAEAOQtXyQajKetLEDROpp1hmo9j2xUmat1lCqApQRghVAQAAAAAAIA2EquXT9EJVDjg30AZtYk+hTljDDVVPHbJEHUPPiRtoyZBTxTpJ8zZLCFUBygihKgAAAAAAAKSBULV8KhOqnkpDlmygiT2lMltCHz0nqiA1vC0qjMwpV6ia8rhPHUJLlgyhU9V9bruEhpwaquNImrdZQqgKUEYIVQEAAAAAACANhKrlkxSqDlx2J/0fg0+hg+/tom5LddIrRajqrlAtrM+GGary6tRAXQ6NhZW3SfM2SwhVAcoIoSoAAAAAAACkgVC1fOJC1ZoHL6POsy+nJa/cT2PX3qlu8zapbhqBt+f7KzHdUFRvN1eXqrfA+2UcXgbrqj44cPT7isArP412wUDWDEWFsai2Rp3A/VB7cT/CmP22ue254xZWpgZWruYkzdssIVQFKCOEqgAAAAAAAJAGQtXyiQpV+y8dRefO6Ef1L44zjFXbuExqY09aZWoGiEZ5OMz0hfpIDFWd+hONcvVRAVIo6oaceR8ZYB2qxu0nxXEH+tSkbQhVAZoshKoAAAAAAACQBkLV8okKVf/bjSfTkFVD6KbVN+U8dpPaxmVSG3tCIGqs1gyu2nRDzg2B8DGij6SVqo78Va+83Qgro/qxDlVd8n5SHDf3nzcObp//uapJ8zZLCFUBygihKgAAAAAAAKSBULV8okLV3408l+pm96P+Cwd5Bqpr3sZlUht7hQSibptcuBrqQwWb+YGjT4WgxgrUqFC02FA1dj9pjjs/qJW3IVQFaLIQqgJAOv1o+e5ttMvx1pg2QjkAAAAANHUIVcsnKlTtNu9mOnZsZxq+YjANXz6YRjj49rH3dVFlUht7UiBq3ucvacqFlEP87Wa7cB96dWgoWO3pfft/KMB06+qA0gwrw2PpSUP0ylGj78j2sftJcdyqLHQsgYA2J2neZgmhKkAZVT5UbUHVtXVUV+eqrW4h1JGl20+So2jagT3o3T+1plZi+T7U4wCnnOsoHWnYH6R6Xj+R5aVjN74K+9uV9K93Pkn/P8+/XHKBXE/wH5cY7e6sp9/8Ta5XqFL3H+d3Hev9fYelOUflMGDFNtq1op9YBgAAAADNA0LV8okKVVn1xIupzYTudN+q4TTk4RvUbd4m1U3Lf3u8DiC9FZ76LfDBoDG33fz2+7w+GIeaum6gvhto6u1LJk40AkozVHUExpLb7u8vtn3cftIft3lfHRu+/R+g+ahsqFpFNSmDVJP9fmwgVC25U+4SQ8NfnSLUFTSGUFX3YXtMWrlC1ULHl9OGxmzaRssHSGUAAAAA0FwgVC2fuFCV9V14K/0fg0+hg+/tom5LdaBEOHD1A2MOa+WPN0iat1lCqApQRpUMVatq6qiupkoss2G7HzvJoarmhpcNdCWoo2GO7wL6lRcS/mvHY3PbT7krdcDHwWApV5IW03/xoeWx9JsbeP930X+I5cVBqAoAAAAAWUCoWj5JoSpUllrZOrGnWrXqf05rSNK8zVKDClUnT54M0CTwRZrjlQtV3bf911RJZXaC+/FC0QNa07A/cajomrZvqNwPTQ/y6unwMVc+zFjxmWufExVaWq0U3fcMow47g3qE68SxaG83Plfw+PQq25w1+x+UojyGt0r1X264kn4nlTt04GeSwr/Y0DO0GjYXTrqhbm7/OrzM7yeq/7jxRa00Dfbj7lMuC9aRQ9Wk9rngWtMBtt34bCBUBQAAAACEquWEULXxS5q3WWpwoWrnxzoDNHp8keZ45UJVfut/LVVXVVOt93mqdXy/hVRXFtxPfuDnyg9NY0PVPFHhZFJomV/eav+ORrlmH6ratk8Tquba6/MRlAtNk8oT6FA15q3sUmgphYtRoacUHJY6VNX924SWdscXHarGtw8Grlr2oSp/SdXrNKatVAYAAAAAzQVfpLDUFkJVewhVG7+keZslhKoAJcAXaY5XLFRt4YWptdXUwtvWorqW6upqqMqsFyO4Hx2K5sJEHSK6wZ9tqBrV3t2W254fWsaX50JbafVrMvv2SeNzhY8/F5rKQWlSeQKLUDUobeiZW6Upv7W9+FA1SG6vg8+8MXhf0GWu1JXrRoSqie1zoWrg4xVCIseXSH/j/xIaIJYDAAAAQHPCFykstYVQ1R5C1cYvad5mCaEqQAnwRZrjFQtV9UrVwMpU94urbD8SILifcGjq8N4qnypUjWzvbXMUFaqa/adi3z5yfH9oTWu4jwCjnlAeCHCTyuNYvP1fB4dcT0sbqkb3n0GoajG+yNAy9LEEJqtQ1aa9ML7wOAoPVT1tR9NbWKkKAAAA0OzxRQpLbSFUtadfs0PjlTRvs4RQFaAE+CLNcT3/KxOqhgNUKWiNFtxPVGiqg79Quf/ZpFGharh9TlGhqtCfHfv24v51IHrAUd62cKgc4p+fiI8nSCrPk1tJKn5RlV6J6a9kTRt6plypqkNe2/4txxcZWur2caGyEhGqWrf3+McX7KfoUBWfqQoAAAAADr5IYakthKrQnCTN2ywhVAUoAb5Ic7xyoar3dn/j7f9VNcGPA0gS3E8udAzSoV9UeShUzZPUPhTa5smFlqX9TNWE8YmrVFnC8fshc1J5sqjP9TRD1XBZLrTMhaZhOiC0+UzV/HLL/hPHJ48hV+6GpWaZWx4KT6NC1cT2EccXCmGjx2cLoSoAAAAAIFQFSCNp3mYJoSpACfBFmuOVDFWZClL1F1WlCFRZcD9C6BcO/PzVlW5ZDxVSxoSKgfYJoWVkeXAlaH4wah+qsuj2SePTK1i1M2hY0vEHxpZUbin0NnbzM1b1Kko37LuLftOx3gj9kkNVlh8aGuGksW8OG/8jZf/x49OC/QTL84PRqPA0f3uuTG6fP365j7jx2UCoCgAAAAAIVQHSSJq3WUKoClACfJHmeKVD1WIE9+OFfilWTgJAWghVAQAAAAChKkAaSfM2SwhVAUqAL9IcR6gKAGkMWLGNdq3oJ5YBAAAAQPPAFykstYVQFZqTpHmbJYSqACXAF2mOI1QFgHT60fLd22iX460xbYRyAAAAAGjq+CKFpbYQqkJzkjRvs4RQFaAE+CLN8aYTqgIAAAAAAEA58EUKS20hVIXmJGneZgmhKkAJ8EWa4whVAQAAAAAAIA2+SGGpLYSq0JwkzdssIVQFKAG+SHMcoSoAAAAAAACkwRcpLLWFUBWak6R5myWEqgAlwBdpjiNUBQAAAAAAgDT4IoWlthCqQnOSNG+zhFAVoAT4Is1xhKoAAAAAAACQBl+ksNQWQlVoTpLmbZYQqgKUAF+kOY5QFQAAAAAAANLgixSW2kKoCs1J0rzNEkJVgBLgizTHKxaqtqim2ro6qhPUVAn1BVb7AQAAAAAAgEzxRQpLbSFUheYkad5mqUGFqrjg0pQu0hyvWKgqUUFrLVW3EMoEBe8HAAAAAAAACsYXKSy1hVAVmpOkeZulBhWqAjR1DSlUraqpo7qaKrFMUuh+AAAAAAAAoHAIVQHsJc3bLCFUBSijBhOqeh8HYPvWf1bQfgAAAAAAAKAoCFUB7CXN2ywdcWp7hKoA5dJQQtUW1bVUV1tNLYSyKIXsBwAAAAAAAIqDUBXAXtK8zdJxnfogVAUol4YRqlZRTcpVqiz9fgAAAAAAAKBYCFUB7CXN2ywhVAUoo4YQqhaySpWl3Q8AAAAAAAAUD6EqgL2keZulFsedglAVoFwqH6q6q1Rrq1sIZfHS7QcAAAAAAACygFAVwF7SvM3SX449GaEqQLlUPFStqqG6uhqqksoSpNoPAAAAAAAAZAKhKoC9pHmbJYSqAGVU2VC18FWqzH4/AAAAAAAAkBWEqgD2kuZtlhCqApRRZUPV4pRrPwAAAAAAAJCDUBXAXtK8zRJCVYAyQqgKAAAAAAAAaSBUBbCXNG+zhFAVoIwQqgIAAAAAAEAaCFUB7CXN2yxVLFQ9/PDDAZodhKoAAAAAAACQBkJVAHtJ8zZLFQtVJ0+eDNDsIFQFAAAAAACANBCqAthLmrdZajpv/5+8CaDBQ6gKAAAAAAAAaSBUBbCXNG+z1LRC1eozABo0hKoAAAAAAACQBkJVAHtJ8zZLTTJUXXLnMYnMoAugXBCqAgAAAAAAQBoIVQHsJc3bLDXZUHXX7r2REKpCpSBUBQAAAAAAgDQQqgLYS5q3WWqSoeqC21uq8LT/stvonS8/ywtV1y+4MhB0ldZ1NH7DdOoqlpls64V0vIsWb1hBN3YUyiqiwOPwFdu+AeLHaMp16nZlQ9UqqqmrozpfLVW3kOrJ7PcDAAAAAAAAWUGoCmAvad5mqUmGqvUjj6Odu3KhKt82vbFuai7wSoUDvw20QfOCsniNOVQt5fFGKbZ9vq5TjGNIfTyF8ffp7aP1bSto/OWVDFVbUHVtHdVWt/C3taiupbraamoRqBfNbj8AAAAAAACQJYSqAPaS5m2WGnyoOmLECDrwwAPFsgAjVJ0+4gTatmMP9Vo0VIWqjO+bn6kaRfeR5/LpKiTjYMzctvi2HsF6ebIOVXvQjctC4yiFkh9vlFKeh6wC2+R9c6gaLOc20ysYqrqrVGuqjG1VNVRXV0NVgXrR7PYDAAAAAAAAWUKoCmAvad5mqcGHqkcddRQdeuih9Kc//Uks9xmh6sr6a+n77Xto2NKxdEH9VQrff27RlXkfBWCKDlU5jCs0yLQN8koZJqZVjuONUsrzUOzYtEJCVVflQlVvZar/ln83ZDVXriax3Q8AAAAAAABkB6EqgL2keZulRhGq8kpVDlX3339/sY5ihKobnphO23bspVmvLFfX2lvrp9CevT9FftYqfxarGYD5eNXmsruotVSmqbfh595angvUjCBP1TFCvcD9UOAn9sd1ctvUmMJ9huvkla2gG29zV6EyceVpVsfr38/VU/srxXnw2+a25x9beGzmdrkdv21fb3fPZdS+g8xQ1fwogEqGqopanep+pmpg1aqFVPsBAAAAAACATCBUBbCXNG+z1ChCVb7mUJV/mey77755dRQjVP3fJrWNtHtPLlQNf9Yqfxar7iMgMWTsQTdOMcrVW+eFkNA6TIzrL7RKMq+PUJiYNxY33Mu1FT6PNavjlcbDSnEeVDvzWMLluo6xX39bRLvwOH1S30F5K1W5rwqHqoGVql64ipWqAAAAAAAADRtCVQB7SfM2S40mVGW8UvXXv/417bfffoE6SihU7br8toCn3ntZbd+xa2/eZ63qa/4sVj8EMyWGjK78VY283QjyrMNEl9xfKNAz+xDHadaXAsRCQlVX4vFG9VOK86ACV10nJxjo5vcd347r8/3wOWqMoWrUZ6rqjwNIZrcfAAAAAAAAyBJCVQB7SfM2S012paoZqC57c636JcTbt+/aS2eM6RP4rFW+z9eThlXnQrCAcBgZokJBI8CLCgltw8TY/goJVfXYw8cREapmdbzFhqqx+xFC1cQg2Ohbs2rn7isXrob2LWhwoWqLaqoNB6jSthhW+wEAAAAAAIBM8UUKS20hVIXmJGneZqlJfqYqh6cdFgz18WXCugVqO3+2arsHL6Fvf9jj2rbbv75vSOtcCBbirpYMBY2Xe9+GHwrm3LpRIWGuj8h6sf2FAr28QNIIIVmgLy43j8EIVcWxFXm83nhy4eJ1dCO3L8V5yNsXB5u6rllH2hbRzhnnjf52c3+NMFT1VqrW1VT526pq+LNV8e3/AAAAAAAADRlfpLDUFkJVaE6S5m2WGkWomvbb/zk85QuvUJ314kp1m8NV3v799r1UPbGOXvz4beWr73f713fdcHIuBJNwyLfBeJu4/mxSL2Tz3zo+ZXoo6MwFeW4wmFQvrj+jDw4cA6Gq7ifXNhdC6jK7UFXJ4HjdfnVd4Rhi26c4D7wtsC8p9AyNTYtp53/JFPOPX9h3SCBUNfqvXKjKvGDVZx+oMvv9AAAAAAAAQFb4IoWlthCqQnOSNG+z1OBD1REjRqiVqlJZQChUvX75OPWLhy8jH5tONTOvUtu3/riXDh9yGv3zvg7KF1t3q/t8fes1bfw+AIphhqpdp+TC6sqGqsUp134AAAAAAAAghy9SWGoLoSo0J0nzNksNPlS1FgpVOUTlMJUvfFuHqt/8sIc+/XqX77NvctdDrzrV7wOgGP4KV2N1K0OoCgAAAAAAAGnwRQpLbSFUheYkad5mqcmGqlEeWzmLHpx0E11zebs8Nww6LRCAAWQNoSoAAAAAAACkgVAVwF7SvM1SkwxVARoqhKoAAAAAAACQBkJVAHtJ8zZLCFUBysg2VD18HKUi/eHNGv+cSdsBAAAAAACgdBCqAthLmrdZalqhKkADZxuq8h89Dkttr6U/vFnjnzNpOwAAAAAAAJQOQlUAe0nzNktNJ1QFaARsQ1WbINW8lv7wZo3HL20HAAAAAACA0kGoCmAvad5mCaEqQBnZhqpxAap0Lf3hzRqPX9oOAAAAAAAApYNQFcBe0rzNEkJVgDKyDVVtglTzWvrDm1bPXr1p2kP19NSGN+jh1c+pa77P27mcxx9uAwAAAAAAAKWFUBXAXtK8zRJCVYAysg1V4wJU6Vr6w5uvBVXX1lFdnaemyi/r0as3Pf/6+/Typo/p02++p+93/6SuX970kdrO5Tz+YH8NxJGd6L3Ro4k8j7bxtrfp52/LM7gTnRruBwAAAAAAoAFCqApgL2neZgmhKkAZ2YaqNkGqeS394Q1yA9Xa6hbi/UnTZtFzb35IX+7Y6/mJtni3eXv9wqVq/ME+GwAxOB1M447ch07tNFgo8/RrI/dXCG8M73U6Ui4HAAAAAAAoAkJVAHtJ8zZLCFUBysg2VI0LUKVr6Q9vQItqqq2roSpzW1UN1Xnblj31Kr3+6bf0wfd76MPvdzvXOa99ulWV8/gDfVaav0LVDVHNbcGAsw09yvVKtDr18n6hMQAAAAAAAGQIoSqAvaR5myWEqgBlZBuq2gSp5rX0hzfACFD9bSporaXqFvvQg0vW0TOf/ki3janPw9u5nMcf6LOijqRxg6Uw0w1QA6GqXs0qrU4NfXRAXp28lbB6f3r/Any0AAAAAAAAZAihKoC9pHmbJYSqAGVkG6rGBajStfSHN6iKaury3/5f54Wqi554mTa8/yVt/HI7venZ+JV7zdu5nMef32+FGG+5d1eKut7r10+FpP7nqjr0xwCY28w+wuI/k1WHqt7qV0mWHy0AAAAAAADNHkJVAHtJ8zZLCFUBysg2VLUJUs1r6Q9vHrUyVX9RVS1VV+VWqo6bPIOefPldeu+b7Y4d9K66dj3x8nuqnMcv9lsBbpDaj8ZxYMorQ1UAOti5710bq1flt+frULQfXa636T68ev5nssaFpEa4K5YDAAAAAAAUCaEqgL2keZslhKoAZWQbqsYFqNK19Ic3kfGRAH0u7UdPvbiJ1r76Lr358Vf00dYf6c1PvqR1r76ntnM5j1/sp+y8QLRfP/+t/io47dfGDUIDb7/Xb9M3wlMWuwo1x1wFK5VHroIFAAAAAADICEJVAHtJ8zZLCFUBysg2VLUJUs1r6Q9vkqqaOqqrqfLvX3xpf7p/6kxa+fQrNG/FenU9ybnP27mcx6/rVpT3OaiPdgpdt3HD1mDA6QWwoc85TR2G6hDWJrAFAAAAAADIEEJVAHtJ8zZLCFUBysg2VI0LUKVr6Q9vHBWohr+4KgGPX9pedv7b9HNv4VcfA8C3I75oKu/t+QkrVf23/ocF+he+rAqfpwoAAAAAABlDqApgL2neZgmhKkAZ2YaqNkGqeS394Q1zg1SPsULVFo9f2l52fqgqlIXErUjND04TQlUpMA2Es1ixCgAAAAAA2UOoCmAvad5mCaEqQBnZhqpxAap0Lf3hzRqPX9pedsLqUw5B8bmmAAAAAADQFCFUBbCXNG+zhFAVoIxsQ1WbINW8lv7wZo3HL20vP/22/yCEqgAAAAAA0BQhVAWwlzRvs4RQFaCMbEPVuABVupb+8GaNxy9trwjvy6p0oJr3makAAAAAAABNBEJVAHtJ8zZLCFUBysg2VLUJUs1r6Q9v1nj80nYAAAAAAAAoHYSqAPaS5m2WWhzfBqEqQLnYhqpxAap0Lf3hzRqPX9oOAAAAAAAApYNQFcBe0rzN0nGd+iBUBSgX21DVJkg1r6U/vFnj8UvbAQAAAAAAoHQQqgLYS5q3WUKoClBGtqFqXIAqXUt/eLPG45e2AwAAAAAAQOkgVAWwlzRvs4RQFaCMbENVmyDVvJb+8GaNxy9tBwAAAAAAgNJBqApgL2neZgmhKkAZ2YaqcQGqdC394c0aj1/aDgANXT9avvt1GtM2vG0JDQjUKwT3s412Od4a00YoBwAAAIBiIVQFsJc0b7OEUBWgjGxDVZsg1bzO/cFtQdW1dVRXV0NVxh9hraqGyzy11dRCqBOFxy9tb5yOomkH9qB3/9SaWonl+1CPA5xyrqN0pGF/kOp5/USWV5r9+NzjbajHEeGYv9LvHz6e/vPh45TfD/+LXE8y3Gj38D+dvoQ6xSh1/9ba0JhNcuDZdszrtKvIYHXAim20a0U/sQwAAAAAsoFQFcBe0rzNEkJVgDKyDVXjAlTpWv2xraqhurpaqq7m6/xQVQWqfpDqha81VYE6cXj80vbGCaFqWEGhqhcc/r69UJaFuP7bH+mHlibrsTSGUDWD86uC002jqa1QpgPXwkNRt/3yAVIZAAAAAGQFoSqAvaR5myWEqgBlZBuq2gSp5vU++1RRjQ5SVbgaDlW5vJaqWxjbdAhrbovB45e2N07JoarWKFdwFqBxhap/8Veo/r6fMS/bH5l+LM4+SrqStJj+iz2/bUfTW3lv+w+xqRMJoSoAAABAOSBUBbCXNG+zhFAVoIxsQ9W4AFW6DvzRlULVvG36YwLqqKbKqBeDxy9trwwvFD2gNQ37E4eBrmn7hsr90PQgr54ODXPlw4wVqbn2OVFho9VK1n3PMOqwM6hHuE6e8Fg9f2hNa7iPvGPSgvWTxxduH1VP0O+fKuwLC4aHznyZ5IaC+WUsF4z6dXRAmtS/t0r195P+avQX4gWSgfZSOBkXeoZWw/7+4SO9Mnfsuf27xyr2E9V/3PgyOb9Jq1S16I8HSIZQFQAAAKAcEKoC2Euat1lCqApQRrahqk2Qal4H/uhGhar6rf8tqqlWhalusNqoQ9U8OhS0DFXz5IeKhYaqrfbvaJRrNqGqwwtj1+x/kL9N9+cGv8njjx+f/fGLbEI/KTT0Q8lgIOiXpw1V4z5DNXb/wXpi6CmMoeShqu6/6PPr4s87tQlLVfha0EcASF+ABQAAAABZQ6gKYC9p3mYJoSpAGdmGqnEBqnQd+KMbE6pWVdc6Zfot/00hVM0PEd0g0jZUjWrvbsttjw4b5fJcaCmtfk2mx6tD2NB9vQL2gKP8NqnGr9v75yf5OEVesJe3AtT7AqnAStJA3VyoGnj7flhU/zahakDa0NP4eAFpdWsWoWpARPuCzy+zX4Fqt6LVpL/xv7gvuQIAAAAAOwhVAewlzdssIVQFKCPbUNUmSDWvA390o0LVvG/8589ZbeShqhEKBld3Woaqke29bY6iQlWz/5QCK1O9t/7rsQVXrXpSjF9qn2moGnrbvMmvG/rm/kCZltB/IFQMk/pPGapG959BqGozvmLOb0lDVU9Rn8cKAAAAALYQqgLYS5q3WUKoClBGtqFqXIAqXQf+6Eqhqv+W//C2UL0YPH5pe2VEhaaht8frcr0yMzJUDbfPKSpUFfqz5/VxwFFeCGp8dIA+ngJXqupQ1W+vP681q1BVWkkZR4ek4bfnR/VvriSVvqhK799fyZo29Ey5UtUfv2X/tuMr6vymDFULevs/PlMVAAAAoBwQqgLYS5q3WUKoClBGtqGqTZBqXgf+6EqhqqOqxlyp6n1RVU1VoE4cHr+0vTJyoWWQDh6jykOhap6k9qHQNk8ulPSDywAjGLWgg1LFCFCLPn4/RI0o9/eTIPTZn7lQ0A0JzTK3PPiZpHnl4ZAwsv/8Mr+OEarmlfnt5f2rOjrAtPhM1fxyy/4Tx+cp+Py68EVVAAAAAE0DQlUAe0nzNksIVQHKyDZUjQtQpWvz2/yD9OenslCdFIEq4/FL2ytDCA3Db7X3V6e6ZT1UyBkTqgbaR4WS9qEqyw9W04WqsStI84JRs2+L8cWeH1vB8DAYCuYHf3GhZN4qVaFeXugYeht84DNWvVWebjun737/NNonhJ66j7xQ0xijsW8VBqftP3Z8WqHn16Penp8Qehb1Fn6EqgAAAADlgFAVwF7SvM0SQlWAMrINVW2CVPNa+sObNR6/tL0yvNAwHKQCQMCAFdtiVqsWs0qVIVQFAAAAKAeEqgD2kuZtlhCqApSRbagaF6BK19If3qzx+KXtlYFQFcCOG3xKn5la8BdUGVRoW9DnsQIAAACALYSqAPaS5m2WEKoClJFtqGoTpJrX0h/erPH4pe2VgVAVwF4/Wp73Fn/etoQGBOoVgvvZRrscha94BQAAAIA4CFUB7CXN2ywhVAUoI9tQNS5Ala6lP7xZ4/FL2wEAAAAAAKB0EKoC2Euat1lCqApQRrahqk2Qal5Lf3izxuOXtgMAAAAAAEDpIFQFsJc0b7OEUBWgjGxD1bgAVbqW/vBmjccvbQcAAAAAAIDSQagKYC9p3mYJoSpAGdmGqjZBqnkt/eHNGo9f2g4AUGp1dXWx98N0eVI9AAAAgMYAoSqAvaR5myWEqgBlZBuqxgWo0rX0hzdrPH5pOwBAIczAk2+HRdWN26aZZXH1AAAAABoDhKoA9pLmbZYQqgKUkW2oahOkmtfSH96s8fil7QDQ3FVRTV0tVbeQyuLpwDMcfCbdj9qmxZXF42OpoSqxDAAAAKAyEKoC2Euat1lCqApQRrahalyAKl3n/uC2oOpaXuUVFQoklUfj8UvbwVNVE39ek8rLTs+FnNrqFkI9qJzCf16TtKiuNR77Yvp3x5g3d9R8r6OaqtBts46By22uJVyWxK9vMS733DSkn1UAAABo7hCqAthLmrdZQqgKUEa2oapNkGpeqz+2KiCopepqvhYCgaTyBDx+aTu4qmriQ8mk8vLywrqaKqEsOyqcqq2mFkJZY1D58RcXqlqNX/1eKDxAjNxHi2qqDYSXwZWsgaDTuJ90bSuyfsK4XOX5+QAAAACwhVAVwF7SvM0SQlWAMrINVeMCVOk68JZVMSRJKk/G45e2g0MFNTFvf04qLzczWJLKM4JQtbJKHqrGzWuzLKKeGXxGhajha31b09vCIsssxpVXL1wGAAAAUGYIVQHsJc3bLCFUBSgj21DVJkg1rwN/dJNCEoSqmVPhVcyqtqTy8uOQvS4ycFPjzZsjbhtztS2vvjUDLh3Suu2DZa5gSBVob46F56hzvnR5TZVesZkm5NJtNPN43LJAqMz79MZgO/5oun/vPHvM/flzQv08uuXmuQ2OIfxYSP3nxpZq/OLvg/j+NbWfjEJn3ofNtcncxre1cFlh3HMgry6P//kBAAAAyBpCVQB7SfM2SwhVAcrINlSNC1Cl68Af3aTQNKk8Ao9f2g5uwBK96jOpvELUSjwviMoLfIUxG6Ej37cJ1OLqqMDU2K+6r+t6QSMHWjog1MGq3UcouHXN/t1+9LzXoaHRJnR8fpuEY5R5+zfOYXD/+r5xzFErI8WfV91/rn7g/Hmsxl9E/7zN7vGIxucgzbUpvM28L9VPS52/vJ8NhlAVAAAAyguhKoC9pHmbJYSqAGVkG6raBKnmdeCPrhiSGJLKI/D4pe3NnhDGpSqvNDUfOEALhozB0NMN2fJXUgohoCE61ONQKtTWDBWNOZrrI38MkVRf4TluBsVuX6UOVQP9h47ZPX/mGIUgmxnnIrc9w/EX3H+KxyOGDj9tr03hbeZ9qX5ahT/+AAAAANlCqApgL2neZgmhKkAZ2YaqcQGqdB34oyuGJIak8gg8fml78yaFZ6ak8oYjL+Qzg0kxpNRt3EBWCp8iQynVn9cuIKNQNTEoFB6XvNCwmFBNetyDoanqW1wFGZJ4LJ5Cx19w/26dYkJVfsyTtun7aepG3U+r8McfAAAAIFsIVQHsJc3bLCFUBSgj21DVJkg1rwN/dMWQxJBUHoHHL21v1iLCRuvyhkTNC3P1aC4043ApPjxz64ZDwshQSp2X0EpVkzFHc32kCPHEOV7hlaqhY1Z9I1QV70thaNy2qHZR221ZP0YAAAAAJYZQFcBe0rzNEkJVgDKyDVXjAlTpOvBHVwxJDEnlEXj80vbmLOkzJbP4zMlykT4z0w3SaqimNiYA9QQ/LsCj5prU1g3kIgMrY47Ghqr+itfwfHYDVLP/4PGF9q/7kY4/LvyN3H9+KBk+P+UIVRPHz4ro3yq0jSAFnea2qIA0vC3cxtwWvk5HmG8+b37lnTcAAACA0kCoCmAvad5mCaEqQBnZhqo2Qap57YdEXqCQowOVpPJkPH5pe/PFwUrc+UsqryA/DDSI4Vh+OKmpkDCxfbieeT6EOan7MIK+wkJVpoOvUN9a4Bw47aVQ0hE9fkdCqJpr5widw/hQ1e7nOTFUdcjjz6h/7/gD9Szx/oq5b27ja02qI21PpI4t9Hj7cuevkGMHAAAASAuhKoC9pHmbJYSqAGVkG6rGBajStfSHN2s8fml7c5W00tB6JWKD5gaTCI7SEkLJJkqFtkKYm0Zc6KlD0YKCUU/6tu7jF7vKXAX/+NkAAACA8kCoCmAvad5mCaEqQBnZhqo2Qap5Lf3hzRqPX9rePCWFjU0jjMwiMGuemk+o6q/abPT/QMhJ/lgD75jxswEAAABlglAVwF7SvM0SQlWAMrINVeMCVOla+sObNR6/tB2aHv8t4wiNCtScQlXG/0SIeqt8Y8PHEvNZqd4KVfxsAAAAQDkhVAWwlzRvs4RQFaCMbENVmyDVvJb+8GaNxy9tBwAAAAAAgNJBqApgL2neZgmhKkAZ2YaqcQGqdC394c0aj1/fPvLIIwEAAAAAAKAMEKoC2Euat1lCqApQRrahqk2Qal6b4Wep8Pj1bekPPQAAAAAAAGQPoSqAvaR5myWEqgBlZBuqxgWo0rUZfpYKj1/flv7QAwAAAAAAQPYQqgLYS5q3WUKoClBGtqGqTZBqXpvhZ6nw+PVt6Q89AAAAAAAAZA+hKoC9pHmbJYSqAGVkG6rGBajStRl+lgqPX9+W/tADADROrensug5U0zK87WxqHagHAAAAUBkIVQHsJc3bLCFUBSgj21DVJkg1r3PhZwuqrq2juroaqvK3aVVUU8dlnpqqUHk8Hr++Lf2hb/Zan+2c15gQRipvWUMdjMekQ03LYJsYLWs6+O1i91ugUvcPZYD5ZaEl1XSQz407Rsx9AAAAqDyEqgD2kuZtlhCqApSRnv8lWalaVUN1dbVUXc3X4VDVDVtrqvR9N2CtrW5h1InH49e3pT/0zV3rs+VgRssrVyFrHZ3dOlenZU1N+gAnKcwtVhH9q1CqQw21FMqgxDC/rMT34QaudWe3FsoAAAAAygehKoC9pHmbJYSqAGWk53/2K1U5JPWCVBWuSitVg6pq6qiutppaCGUSHr++Lf2hb9bUisDw24cNeeXRq+NSQ6gKeTC/rCT93DKbOgAAAAAlhlAVwF7SvM0SQlWAMtLzvyQrVTWEqmWnwp2Y1Wx55ZZBDa9uTXyLdFwopfZj9OEHUG7oZq5iVP1IAVVM/1HjU8dr7tcXPOZA+0LCscjjsywvGX1++XM59f7zH2/5+KMDUesQEfMrv72wb7vzGRdQe4+vzWMCAAAAUASEqgD2kuZtlhCqApSRnv/Zr1Q1AlCrUBVv/8+OG6wEAqSk8rigysOBj9lGBURpQim1PWpcxYdeNuOLC61UfSNojjy+KLHH50gqj2WGoUF2/bnn1wz5wscXd/zhMk2dz5jw3hfxmJkwv9xtNqt5o887QlUAAAAoD4SqAPaS5m2WEKoClJFtqBoXoErXZviZHKrGfZlVNB6/vi39oW+2osIiTSqPCJJipQylwqFSUDYrCQOE9tGhF4dRoZWUlqsrtfjjSy4vraTzG3/8ZohnHodtCGj9mJlSPv6Nf365Y7QOVcX9AAAAAJQHQlUAe0nzNksIVQHKSM//Sq5UVW/75y+0aiGXR+Hx69vSH/rmSQiPbMpVkJQQIIbfWh21Ik4MpQoYV9rQy2J8kWGU1FZJOCe+As+7tWxWqkae36Tj9+s64+hwttI6zTGpxwzzK9BWQagKAAAAjRNCVQB7SfM2SwhVAcrINlSNC1ClazP8jAtVW1TXOmXpA1XG49e3pT/0zZIKb4RASIssd0O76EBHKE8VSiUFRsWGXnbjiw+9bANUid3xRZeXWsL5TTp+PW+c67OdY+BVoWe35j5tzxnmV/L8sp8jaj8VW/UMAAAAgFAVII2keZslhKoAZaTnfyVWqhYTqDIev74t/aFvjpLejh1XroKaumDw1LKmxguXwqGSe98+lNL9RwVLbqDkB0UqhErTv+X4VFtpDKH9FyD++JLLSyspVEw6fj6fZ1NNjYPHz23PPlttCz/OUTC/4s6vSx2DNKYAty/559gbV4rHBQAAAKAQCFUB7CXN2ywhVAUoIz3/s1+pqj8nNUyHqO4XU+WX11FNVTA8jcLj17elP/TNDwcqcaFdUnku+NLM4CZY5vRTI4RyRlu/nrG/cP+BAEkHXcrZ1FoK/cy2Sq7/+PHlqM/eFNqL+0gMuIJij8+ivHTcY4tfqRl3/F6Zfz8iVEwQPn7Mr1B7b4yBxylM1Qked05uH7F9AAAAABQJoSqAvaR5myWEqgBlpOd/SVeqlgiPX9+W/tA3Nyr0iVkJl1QOAJWnQlkhrHW5oam8StWjVssiVAUAAIDSQqgKYC9p3mYJoSpAGdmGqnEBqnRthp+lwuPXt6U/9M2Lu3IwOkhJKocs/DT71aLuA/irTYV/gKh/jEQGrsxrG1sHAAAAoHgIVQHsJc3bLCFUBSgj21DVJkg1r83ws1R4/Pq29IceoJx0QFroNUCO9FEdvC3ms1K9FaoIVAEAAKAcEKoC2Euat1lCqApQRrahalyAKl2b4Wep8Pj1bekPPUC5hIPRYu8DAAAAADRkCFUB7CXN2ywhVAUoI9tQ1SZINa/N8LNUePzSdgAAAAAAACgdhKoA9pLmbZYQqgKUkW2oGhegStfSH96s8fil7QAAAAAAAFA6CFUB7CXN2ywhVAUoI9tQ1SZINa+lP7xZ4/FL2wEAAAAAAOD/396dQMtR1nu/v2u977rvWu9w7l3vuS5f7z2eg2ed40RUlCmgghjmsAOZyE5IINlJmIcMJMxzIAmBMAQSElCZIQkKQVRyUBDxQFQGUVAIggoRZJ7CkOB5/7efqn66n6rnX09V713de6hvr/VZ3f1M9dTQ3bt+qe60D6EqUFzecVsmQlWgg4qGqqEAVbvXPnjLZuavlQMAAAAA2odQFSgu77gtE6Eq0EFFQ9UiQap7r33wls3MXysHAGDwmiV3b31Slo/U6jA0mX1+l8xR6wBgYCJUBYrLO27LRKgKdFDRUDUUoGr3zQ/cYTKiu0d6erpkuPMhbAwb0V0rN3V1XcMT9XnM/LVyxI749BHy7GcnywWf0utbs6vc+NnaeJ/ZW/ZS6+3yrLKWWzE7niwfu/QB+Z91f3/cFL2d4h+Oc/pdulY+saPerrfaPX5p9v2yLHhtd1lu3b6t3m5I2Fbm1NZxzrF+2fJHvyw7JdqWpI/bd+Tt7d0n7R6/7dt3m/1l+cbN8vTy/ZW63WTv8++RI1dcJLt6ddvIrnNNXd35J8oXOlzfV30dP9T/C1NvbNYZcycl+pajb/tn5PInZQvBKoBBhFAVKC7vuC0ToSrQQUVD1SJBqnsffdgO75Kenm4ZMcLc+6Fq0nDp6umRruFanc7MXytHbCiGqsdN21deP2tfuWOEXt9X7R4/aL/LGqGl6+P7KW0VgyFUtWMUXadW7XTJrrL8tV3lsH3dsh0Tz4eUKODcUUYmytsX+vV9+35aDnt0d1lwSbveu0sY/9gda+uY3qau9oaqUbC2cZm//JEXyZErbpS9p5p7P7SLArtGUFcP95zgsN31fdXX8VvrP0nGrLhHxpR5JXAf908sDtS3rJ+VKgeAgYlQFSgu77gtE6Eq0EFFQ9VQgKrdxyFpPUiNwtW8UDW+orV7xDClTmfmr5Uj1ulQ1Sp3uUlDN1SdIh+vB5Yfm7x7s3y/y1oOIE1w2c4rSfsyfltD1ShgTAZ+Q10UcrbtismUMrZvu/dRCeNH27StV7oGjFwmT6tf+zchYD2oi8K7dGhn6m+UvXdyymzIF5W1u76v+jp+q/3jUHPK1N2Uut4wy+/L/nHLs44BABh4CFWB4vKO2zIRqgIdVDRULRKkuveJD90ioeqwEdJtrmodptRlMPPXyqvrC3LBZ+yVopYbbqbr3bp0aGrb2jbN+gucK1Jv/Gfbvyk7VA0tP2y/sd+Mwk7fN+XSr9h2n5FLZ2XVGV+UOxJ995XHxn4mqis2fhvVr1L9+7NOlk9q9TXulaKWFk4GQ8/U1bB/f+ll8g9RXRzqNpe/u3ziLH2crPFD8/vk5LVenZEcJ16mXpcnvkIxNwyLQrdaO6vR3lx9uKscdqyt31FGRlcs1h7XQ8tGgGnLnbr88W1d8gpI96vq6vjpKybT4xt2GW4/ZTv0bfxebt9G/3p9tOzQVaD1beL0b1x1mrP9Innj561fus6w+zhn+6rjO+2KbP/Mq1RdWmjnldWvhLRXY7a7vlHeS30dv9X+O50oUwoHti3y5qKVheYX+vmHObLmxa3y4oblso9XBwCdR6gKFJd33JaJUBXooKKhaihA1e4TH7qBUHV4V/M3VVu5StUw89fKq6keenpSoWhefV6o6vGD0axQNfnzANZoOcJpk6VI6GmvMk36qhwXjZEOXGPlhar1k13FmqO19ik2VA38hqoWWjZD0WQ7LZDUgs12h6p2/CKhatH1U9XDrORvi6ZEYZZzFaPbpxGG7SgjzeNHd635suwUlcfBVxyK1cptEJZeZmj8Rv96QBdJflU9qrdziOrjr5lnjp/oX2trA7yoXTKsM/o0fnpdNcH5xWX+NnDVv1afEVjmbT+9jaPA/Lxt4pbnbF9vfG3/m/XL2v41c9ZnhWmOrNDOfrU8CgxNWBcHd41QtJ31prwv+jp+wf7RV/BrdUZ5V6mmmLm0un/ctjVRuK7+BAChKoCBhVAVKC7vuC0ToSrQQUVD1SJBqnuf+NBt4ev/rfxnVWb+Wnkl/fPoOKR0vp6fCDdt/ad3bfSxIef9//qF2vOioWozLE32j8ua5alQ9VN7y/2J8Zv9tatds2R+Pf8rO8pjJgSdtaPsp7Zthqo2SNX029f/C4SqSa2Gns2fF9C/et/3UDVJ72+DU28O9f+gy71SN7OtxgvM0rSwLCM0dMaKgrB6mBZfQemGae6YOePb/onAMNmnyPh+AOivc1aw2PL40Tapj19w++bNz98GTcFAtCZv++ltrGLzi9dZCUwd+jz9uaj7P3P7G6ErFB2B0G7X6D9jsldg+qFo2+rdufRGX8dvuX9cV+ZvwjaYubS6f9y2NYWuWAaAAYBQFSgu77gtE6Eq0EFFQ9VQgKrdJz50C4WqNUXb1Zn5a+VVtNe/TvYCSjfc1Opt0NpSqOqEosn+9bIaNVS1oa6ilFB1xFejck2jrQ1etbq63oeqJV2pGvj6vw0eTTur1VA1e/wSQtUC88sMSlM/S+AqHqoGwjC13gm1TH09KEsHqXEolnVVoxs6BsbX+if6KPVuwKeFfRnrrAeLfRw/Y1kNheanBY+Wtn1z6lsZv+D2ywt2DXX7qtsnZ/97c+pjqGquwDy/fjVkxPyOpxOKtrO+UdZLfR2/N/2jPqntWAZt3BbnR6gKYLAgVAWKyztuy0SoCnRQ0VC1SJDq3ic+dFsJVbtHyDCtTmHmr5VXkQ1NG1ei2itDbbjZ6pWqjRA0K1Rt/j5qOhQteqVqb7RypWpQI4S1Pw8Q67crVZ0rSdX/qMpeydm4krXNV6rakLfo+AXnlxmqKleqtiQKtQJXUpr6dFjmBGHN8NQPUuNQzAlQlf554/v947GbfTLGt/WJsYx0/2S5Hyy2On4cCCbrc7Zv3vyiEDFrjHh5euBq5G2/mtD4BbefHki7Mravuy3dssz9X69P9OlDqNr4Snm6rN6u3fV91dfxe9PfbMdEyFmS3uyflOyv/wPAwEKoChSXd9yWiVAV6KCioWooQNXuEx+6hULV4dLV4u+qmvlr5ZXUCFHTUqGox/6maVZ9X/vb0DX9n1RZxX5T1fJ/+9T+5qn+m6nN0NT/T6oiqRA2e/z2y/rdUTdUTdc1Q8tmaJpmA8wiv6nq1xccP3d++hya9XEI69bF9anfVN1nuWyIrgBeL0e75ekQ0JbZgCwKuJxQKwrgds8JT53H6asK6/0b4VpwfPvc1tcDPTPfxPzc0C8V8CXGV/o3xNshnlet3e317dHn8VvZvhnzS2yD+vNGfb2P296Vt/28NvXnrcyvJj9UDW3f1LJr7Rr7P2/727Le/kdVNdHvhTZCQv/r7e2uj9kr9tOvz3yFxq+Hk71Z/6T4KlH/d1V7P/+GXu6fpgL/UVVf5gcAJSJUBYrLO27LRKgKdFDRULVIkOreN34jtf6fUDXZ/+Hfr+8a7n9Yh5j5a+WV5X7F/jN7yxHR1avOFaNe8JoKNIP9ldA0cdVpXqhqaMFqa6GqH466oacWrIZC1eRVqvnjd0Dqa/Dub6zaqzxt2PiJyWuLh571MfxQ0wktnWWbK0b/ocXxw/OzkuMk6/1gtXioatSDv4ZkiBV9tdupb15taPrVA7EoDKv3M0FYPURM9032j2WPbzhBXo0J29yfGfC/dh63b4RyNVEI5/TXA0B3Oc2Qr9Xx5xzrhodWePsm+8fP3fHT2yA5HyM9vrv88PYrMn7+/GrqYaht59VnbF8jtP+LbP/IyGXy9NbNcvccpyxSD+GiQNFlf59TaeMFdu2uN0bKkg3m9VnwZ08SCowfCFXD/VN1NYmrRht6O39//Fgr+6cuOgaelOWlzg8A2oNQFSgu77gtE6Eq0EFFQ9VQgKrdax+8ZTPz18oBoExRIOcFmENY+qpPdMyc9ZsH9e9p7rNko7z44kZZso9eP9D17/wL/ATE0esJVQEMGISqQHF5x22ZCFWBDioaqhYJUt177YO3bGb+WjkAlCfjqsIhJH3VZhQie1eSojPiYG1w/qZm/UrKDctlH7V+oOvf+ef//MNg374AhhpCVaC4vOO2TISqQAcVDVVDAap2r33wls3MXysHgPI4Pw+g1g8Bqa+9E6j2t1lyd+ZXwAeo+hWUL66Zo9cPdP0+f7PP75I5al2NnR+BKoABhFAVKC7vuC0ToSrQQUVD1SJBqnuvffCWzcxfKwcAAAAAtA+hKlBc3nFbJkJVoIOKhqqhAFW71z54y2bmr5UDAAAAANqHUBUoLu+4LROhKtBBRUPVIkGqe6998JbNzF8rBwAAAAC0D6EqUFzecVsmQlWgg4qGqqEAVbvXPnjLZuavlQPoXx9/8Aa1vCjT38qq18qLSPfNG8vWtzqXvHEN0yaP1g8AAKC/EaoCxeUdt2UiVAU6qGioWiRIde+1D96ymflr5QD6lxYOakJ93Lo0ra/7OC2rbajMcuta6Rsa00q3yXsOAAAwUBCqAsXlHbdlIlQFOqhoqBoKULV77YO3bGb+WjmAvur9/z5eRhCYN4ZWb8vSdXnPs8qsonXmcR63r+3TyvOhIed/OQcAAIMCoSpQXN5xWyZCVaCDioaqRYJU9775gTtMRnT3SE9Plwx3PoSTbJtuGTFMq9eZ+Wvl1TVFPn7pA/I/6/7+0svkH9R26E9HPvopueW1T8kYpa4vdr0kHtfq/fj7y/KNm+Xp5fsnyw89LQr5PnFo6rHTxoaA5j7E7aPR2rhloTFsXd69xtTlcdtqj0NlaXbMEK9fgf0w0I1c/qRsIVgFAGBQI1QFiss7bstEqAp0UNFQNRSgavfRh+3wrjgoHWHus0PVYSO6pae7W7oJVfsgGag2gtXjpihte+8fjovH/fh+ev2gMPNuuXjjh3LGgpF6fZv1JVSNgtNa/12VuoZj+xaqRoHXxmUyMl23x+HyvxJh3qXyD3s0690AUA0D60J1ltYma/x0W/s8776orPam3KXVp8vS0m3ynkdy9kMRB8z/V5Fb/kUOUOrKkD9+HNxvWT9LqQMAAIMBoSpQXN5xWyZCVaCDioaqRYJU936bbYZLlw1So3A1K1Q17UyYau+1Njozf628knY8WT7mhahT5OOEqp59r/9QLt74lEzaS68fyNoeqo5cJk9nfe0/CvPqAZ77ON2uxoSBIb1pb+/Tj7Pq8u7tY8uWpYXqjKzx0tw+bvtWnkda2A9Z+j9UrQkdawAAYMAjVAWKyztuy0SoCnRQ0VA1FKBq94kP3UCoOryrR3q6htceE6r2ST1U1QPP3eUTZ5mfA1grn9jRKbdB7FknyyejMv9q149N3j1q+8nJaxPlVnLMeDlanQlj//6sy+Tj9fqPTT65sayWAtr6VaYN18/26o6ZadvPlmNMm3uvlB22GSmT7nX6uaJ62yebucL0zGO3kTPrX683zHNbHwWet9ce10NN4/JLUvVO33ToqY1/5L56X5dt05ARqobGtzKvUm1RVohohOoMU6+1ccuKjJ9373LLzGMrXZcWqivCXVYWrV8R+yzZKC+umZMoi8LO+z6t+FdZuXuz3YmXOHVKOJqor/nxIXF50fFjGT8zEZkja17cKi9uWC77eHUAAGAgIFQFiss7bstEqAp0UNFQtUiQ6t4nPnSzQtVhI6S7UU6o2lf2KtJGqOlepbrfZfUwMw5JDRuUxqFmMhC1WglV08uP6+PfddXqrKI/UbDDgqfUUNR+jT+ud65A3etKOcO0iYLXesCqcYPZAPu1fRuk2qDThpeN4NNeSbrvp+RyJbgMhZ5u0DnmdmesumgZqTJPH8afsz4r5GqNFg66tD5WVjv3uTaGLSt670qXuc+19qHyvihzTC1UtUJXkkaB6SX/nHzutC1yFWqhK1VrohBf/QkAQlUAAAY6QlWguLzjtkyEqkAHFQ1VQwGqdp/40FVD1fg/p+oeMaz+nFC1HKn/rKpxFWr9atWc56aPG7ymZX7937vqNdk2/TgOY+O5FgpVbUC68W7Z15bZq1ajUNReierXN69cbZb15vdU7ZWebpm56tOGlOmQ1dan++RdSZpolwo9+xqqhscPXTnYut4EhLZP+j70OF1W9N6VLnOfa+1tuUsrc4X6FuH2L6J3oeo/y4/TV5Xu/i/ynFMWX42qXXna1FKoWsKV0QAAoPMIVYHi8o7bMhGqAh1UNFQtEqS694kPXS1UNWXdI2RYo4xQtVzNcNUGoOZq08aVpfUrVxPhqPMTAlY6PM0MVevjaZpBavOq1Th8rQe7BUJVe5VqdkDqftU/rtd+O1Udp6CsUNWWRYGn+fq/U6+qQKiqhYIurY9h69w2obKs51qZNk66rujzLFnt8vrb+vR9q6Ig1VzhqdiwpPkPCZmhZxSgul/bt5Ihahys1uuUcQhVAQAY+ghVgeLyjtsyEaoCHVQ0VA0FqNp94kNXCVWj31LtydA9Itk/g5m/Vl5J+12WusK0eeVpMwCNg1bTzg05m30c9ZA03SYzVFWuVHX1NVSNA1Ll91JtWf1KVnsFqm2fuHJVu5q1BV4omfp6P6FqHAZmBYNuncatC7UztLG159o4obKsflnlaVn1oX5uXdbj3jh6zdbWr1RNXZWa71Oy8pZPJ34uwGgpVFW//g8AAAY6QlWguLzjtkyEqkAHFQ1ViwSp7n3iQzfrN1UTuFK1TzKuFE2HnDYUNZIhrP+fVBnp/unfVm3+pmozxE3WO0FqkVB1n+WyIbqybr0cbctqsn5PtfF7qPanANIS/wmV8p9VpX9PNWP5RjqUjH6T1AlROxGq2r7e77S6+jB+2VcOmmDQ0uqtdH0r7bW2ofqs9uk+bln63qW1Sytanve8FaFQdZtD/sW7+jSmh6Qh6d9gjWSO7yrwH1Upr0MAADAwEKoCxeUdt2UiVAU6qGioGgpQtXv7m6n+lahZwSmhal+5gWkUaGpXjdorSr2rVP1Q1W/jt3P/oyotWC0rVDWaV5/Gkr+LmgxMTV3UPv0/+yfCV+WK1ZxQ1YSVDakANS9U9frX2YC0UKhaE4W5Gf3dcq0+d/yRy+TprZvl7jlOWS+YMFALCIuGhHnt3HptOa08d8vMvaW1ccu1drZMo7Vzy2y5VqaV5wmGqjXJ/8HfDUDrwWqjrsa56jT9P/9nXZGaPX5ddKw9KctHpsojI2XJBvM63CprjtbqAQBAfyNUBYrLO27LRKgKdFDRULVIkOreax+8ZTPz18qRzV5pGvrPqKDzQskhas76zb26WtWGf3kBYJF2WXV5ffPGDPUtIq9vVn3RZfZlboNLgZ+aOHo9oSoAAAMYoSpQXN5xWyZCVaCDioaqoQBVu9c+eMtm5q+Vw+dexapfgYo8VQlVbeDFb12iXfJ/ZqJ+peqG5bKPWg8AAPoboSpQXN5xWyZCVaCDioaqRYJU91774C2bmb9WDp8NVQlUe686oaoxS+7O/Go20Bfm2LpL5qh1NfUrVAlUAQAY2AhVgeLyjtsyEaoCHVQ0VA0FqNq99sFbNjN/rRwAAAAA0D6EqkBxecdtmQhVgQ4qGqoWCVLde+2Dt2xm/lo5AAAAAKB9CFWB4vKO2zIRqgIdVDRUDQWo2r32wVs2M3+tHAAAAADQPoSqQHF5x22ZCFWBDioaqhYJUt177YO3bGb+WjkAAAAAoH0IVYHi8o7bMhGqAh1UNFQNBajavfbBWzYzf60cAAAAANA+hKpAcXnHbZkIVYEOKhqqFglS3Xvtg7dsZv5aeX8ZufxJ2bJ1c03gf7YGAAAAgEGOUBUoLu+4LROhKtBBRUPVUICq3Tc/cIfJiO4e6enpkuHOh7AxbER3rdzUNXWPGJZoE2Lmr5X3tznrN8uW9bPUOgAAAAAY7AhVgeLyjtsyEaoCHVQ0VC0SpLr30Yft8C7p6emWESPMfUao2jU8UdYKM3+tvN/NuUu2bFwmI7U6AAAAABjkCFWB4vKO2zIRqgIdVDRUDQWo2v022wyXLhukRuEqoSoAAAAADAWEqkBxecdtmQhVgQ4qGqoWCVLd+8SHLqEqAAAAAAwZhKpAcXnHbZkIVYEOKhqqhgJU7T7xoRsKVd3fVO0eIcNSbULM/LXyfjdymTy99UlZPlKpAwAAAIBBjlAVKC7vuC0ToSrQQUVD1SJBqnuf+NDNCFWTzM8FtBasmvlr5QPD/rJ842bZsvUumaPWAwAAAMDgRKgKFJd33JaJUBXooKKhaihA1e4TH7qFQtWaou3qzPy18n7HlaoAAAAAhjBCVaC4vOO2TISqQAcVDVWLBKnufeJDt2BYGv8cwBAIVflNVQAAAABDGKEqUFzecVsmQlWgg4qGqqEAVbtPfOgWCVWHjZDunh7pHjFMr1eY+Wvl/Y5QFQAAAMAQRqgKFJd33JaJUBXooKKhapEg1b3fZpthMqLb+U+oGrplxLD4g3h4V7Kua7j/YR1i5q+V9ztCVQAAAABDGKEqUFzecVsmQlWgg4qGqqEAVbvXPnjLZuavlfc7QlUAAAAAQxihKlBc3nFbJkJVoIOKhqpFglT3XvvgLZuZv1be3+as3yxb1s9S6wAAAABgsCNUBYrLO27LRKgKdFDRUDUUoGr32gdv2cz8tfL+MnL5k7Jl6+aau2SOUg8AAAAAQwGhKlBc3nFbJkJVoIOKhqomKG2F9sFbNjN/rRwAAAAA0D6EqkBxecdtmQhVgQ4qGqpqfUO0D96ydWo5AAAAAIAmQlWguLzjtkyEqkAHEaoCAAAAAFphbiYY7Yv0OWQReeGUrdeCLaC/5B23ZSJUBTqIUBUAAAAA0ApCVaC4vOO2TISqQAcRqgIAAAAAWkGoChSXd9yWiVAV6CBCVQAAAABAKwhVgeLyjtsyEaoCHdT+UHWYjOjukZ6eLhnufAj79bHuEcOUNrrkcgAAAAAAnUCoChSXd9yWiVAV6KC2hqrDu6Snp1tGjDD3Wqg6XLpaDFJdjeUAAAAAADqGUBUoLu+4LROhKtBB7QtVTWBaD1KjcNUPVYd39UhP1/BEWSvi5eh1AAAAAID2IFQFiss7bstEqAp0UPtCVedDVw1V46/9dw13y1rjLQcAAAAA0HaEqkBxecdtmQhVgQ7qv1DVXMnaLSOGj5Du+u+pRj8VMMxtE+YtBwAAAADQdoSqQHF5x22ZCFWBDuq3UHVYPUztHiHD6mXDRnQr4Ws2bzkAAAAAgLYjVAWKyztuy0SoCnRQv4Wq9krVxJWp8X9cVfQnAbzlAAAAAADajlAVKC7vuC0ToSrQQf0bqqYDVC1ozeYtBwAAAADQdoSqQHF5x22ZCFWBDuq/ULX+dX/n6//Du5I/B5DHWw4AAAAAoO0IVYHi8o7bMhGqAh3UvlA1/t/94/+AypW8EjUKUm1dC4GqES9HrwMAAAAAtAehKlBc3nFbJkJVoIPaF6rqH75l6tRyAAAAAABNhKpAcXnHbZkIVYEOIlQFAAAAALSCUBUoLu+4LROhKtBBhKoAAAAAgFYQqgLF5R23ZSJUBTqIUBUAAAAA0ApCVaC4vOO2TISqQAcRqgIAAAAAWkGoChSXd9yWiVAV6CBCVQAAAABAKwhVgeLyjtsyEaoCHUSoCgAAAABoBaEqUFzecVsmQlWggwhVAQAAAACtIFQFiss7bstEqAp00FAKVUcuf1K2bN1cc5fMccoBAAAAAOUhVAWKyztuy0SoCnRQ+0PVYTKiu0d6erpkuPMhvM2wEdLdY8p9XcOddgHJ5TTNWb9ZtqyfpdYBAAAAAPqGUBUoLu+4LROhKtBBbQ1Vh3dJT0+3jBhh7lOhqiYKWmvthyl1isZy0ubcJVs2LpORWh0AAAAAoE+0UHXq1KleWag8fQ5ZRF44Zeu1YAvoL3nHbZkIVYEOal+oOly6bJAahav5oerwrh7p6Rqu1mni5Sh1hKoAAAAA0DZZoWo6QNXKrPQ5ZBF54ZSt14ItoL/kHbdlIlQFOqh9oarzoVskVK3/HEDRr/4b3nIsQlUAAAAAaJtQqGpD1PTztPQ5ZBF54ZSt14ItoL/kHbdlIlQFOmighKrDRnRLT/cIGabUZfGWY41cJk9vfVKWj1TqAAAAAAB9ooWqhhukhgJVI30OWUReOGXrtWAL6C95x22ZCFWBDhoYoar5qYDWrlI1vOUk7C/LN26WLVvvkjlqPQAAAACgN7JCVaNIoGqkzyGLyAunbL0WbAH9Je+4LROhKtBBAyFU7c1Vqoa3HIsrVQEAAACgbUKhqpEXqBrpc8gi8sIpW68FW0B/yTtuy0SoCnRQ/4eq8VWq3SOGKXVh3nIsflMVAAAAANomL1QtIn0OWUReOGXrtWAL6C95x22ZCFWBDur3ULXA761m8ZZjEaoCAAAAQNsQqgLF5R23ZSJUBTqofaHqMBnR3SM9PWndMmKY/TDu/VWqRrwcpY5QFQAAAADahlAVKC7vuC0ToSrQQe0LVfUP3zJlLodQFQAAAADahlAVKC7vuC0ToSrQQUMxVJ2zfrNsWT9LrQMAAAAA9A2hKlBc3nFbJkJVoIPaFap2Cjdu3Lhx48aNGzdu3Lhx6+xNC0lbpZ3f5ckLp2w9N24D6ZZ33JaJUBXooMEeqmofzgAAAACAgU07v8uTF07Zem15rXrkkUcqQVt3lCvvuC0ToSrQQYSqAAAAAIBO087v8uSFU7ZeW16rtAByKNLWHeXKO27LRKgKdBChKgAAAACg07Tzuzx54ZSt15bXKi2AHIq0dUe58o7bMhGqAh1EqAoAAAAA6DTt/C5PXjhl67XltUoLIIcibd1RrrzjtkyEqkAHDfVQ9b777mvQ6gEAAAAAnT930s7v8uSFU7ZeW55r6tSpDVq9oQWQQ5G27shX5Biy8o7bMhGqAh00lEPVTv9RAAAAAACDWSfPobTzuzx54ZSt15ZnFQ3DtAByKNLWHcUUPZbyjtsyEaoCHTRUQ9VO/jEAAAAAAENFp86ltPO7PHnhlK3XlmcUDcEMLYAcirR1R3FFjqm847ZMhKpABw3FULVTfwQAAAAAwFDUiXMq7fwuT144Zeu15RUJv1xaADkUaeuO1uQdW3nHbZkIVYEOGoqhqtGJPwIAAAAAYKjp1LmUdn6XJy+csvXa8oy88MulBZBDkbbuKK7IMZV33JaJUBXooKEaqhqd+mMAAAAAAIaCTp5Daed3efLCKVuvLc8qEoIZWgA5FGnrjmKKHkt5x22ZCFWBDhrKoarRyT8KAAAAAGCw6vS5k3Z+lycvnLL12vJcRcIwLYAcirR1R74ix5CVd9yWiVAV6KChHqoCAAAAAAYe7fwuT144Zeu15bVKCyCHIm3dUa6847ZMhKpABxGqAgAAAAA6TTu/y5MXTtl6bXmt0gLIoUhbd5Qr77gtE6Eq0EF5oaphXvxa34FAe8MCAAAAAAxs2vldniLBFKFqa7R1R7k6FagahKpABxGqAgAAAAA6TTu/y0OoWj5t3VEuQlVgiCoSqhpa34FAe8MCAAAAAAxs2vldHu1cVaMtD+gv2jHaLoSqQAcVDVUN868rAAAAAAB0mnaOGqKNAXSadmy2E6Eq0EGthKqW9kYBAAAAAEDZtHPSVmhjAu2mHYudQKgKdFBvQlUAAAAAAAAMLISqQAcRqgIAAAAAAAx+hKpABxGqAgAAAAAADH6EqkAHEaoCAAAAAAAMfoSqQAcRqgIAAAAAAAx+hKpABxGqAgAAAAAADH6EqkAH9SZUPWj8BFTYrrvvIV/9xjcj5jHy2e2lbU8AAAAAwNCiZSmdQKgKdFAroepB4w5GxdmAMB0aopgoWFW2KwAAwKCkBAkYmraZftOgpK0L0Fap90ktW2knQlWgg4qGqgeOPRgVZ0PBdFCI1phtqG1fAACAwSYdHmDo2mb6jfK1w84unRm3nWNr6wK0k/ZeqWUs7UKoCnRQkVD1wLHjgSgM3GW3b6AEcbCqb2cAAIBBwwQIUG37xS/JgkWL1brByASUXz3s7NLZUFWr6yszrp3/UNsfGMC098oaLWtpB0JVoIOKhKqjxoxDxe3y9TgINPfoO7Mtte0MAAAwmGjBwWB08MRJct6Cs2TR4vNk0pQpibpDp02Lys8593QZc/CERF1IFOItXKTWuX7yvTny0zvmqe6t1fX0TFT7ddo2PTfKVw89W3GW7DrlTNl18hnRY71NNjNuO8e28y+6P1DcYYfp5VWnvVcaWtbSDoSqQAflharpN4Ibr5kp9/1wkdz7g8Wy/s6L5K7bL5Xbb1sma9Ysl5tvWSnX3fgtuea6a2XFt2+Qi5Z9WyYeOt0bA4MPgWr5tGD1zgu3C0q3BwAA6F8mQOis0eO75dCpPTJ2wkS9ftwEmXLYtOheq9dcsPAcuf/+e2XDhgfl0suWSPchU6LyKVOnyWWXXSQPP/xL+fGP18tZ55zh9c2y7Re+JOddsEitcz3wg1Pl3XdeUf3m7hPlp3fMlWnT9HXNc8s1R7TsuquOVsf6p54bZdcpZ3t2mXym7DjuRBl70a9bYvubcds5tp1/0f3Rin27x8qeh4xR60Kuvfbalmnj9KfuiePkZ7dMkkmT+ud9YGBLv082aZlL2QhVgQ7KDVVHj0249qqp8tu3PpB33nldXn/rDXn1jTfkxdffkBdeeVP++Mob8sxf35Tv3f8neWLTG3LfYxtl6crVMrmn9sGcGgeDiwkAh399d9/Iw2Tn438gO5/ww1y7HHuH7LzXOH2cCopC1dR2vn3Rl2XL1r+pnrjzqDhYTfUZbHYcP1ItBwAAg5ASGrTTuAkTZd68+XLyKafI/Pnz5ZAphyXqJ0w6JCq39ea5W59l8eLz5cknn5CnnnpKHn74V7L0kgtl5hFHyNKlS+Txxx+Pyk39wkXnqf01237hi/UQT6+3fnrXmfLBlr+pnrn3DHn8R+aK1fkydVrr3yC8/uo5svFtkcffyHbT1Ucl2pg+2lhx8GmuHE3aufsU+dLII6Iw8+k3/3di7Cxx8Bn3b4aq7Rnbzr/o/mjFxy/8pvz9JXvI/3vOXrLfwcVfD1pomkcbpz/dcsUUefEPP5EbLzGhst6msrT3yjotcykboSrQQXmhatdBYxOiUPXtD6OQ552XXpU/nHGePLb9LvLb8YfI80/+QTa9vVVu/fFz8uwbW+Tp1z6UHz/6nJx2wSpvHAwuWaHqzrN/IgcefpEcNHNJrgOPuFh2Ov5H6jhVZLZpejvftvArXphqbfzJ6fJkPVhN9xtMth+3b+Px/geNkZ3HHZCoBwAAg8eo0SZA8B1z3AlyzTXfkhtuuDHTqlVXy4zDj1T7Zznq6GPk4osvlm9961uyfPlymTdvnkyafGhUN2HiIXLiifPkiiuuiOovv/xymTV7tjeG5qhjjqn1u0yeeCIOVn/1q1/JihXL5PHHfx09N+WXXrZUpk2fofbXbDusHuIpda6frDtbNn/wN7nspofk/FX3yUlLfyhT5t0QlT3384XyzL2ny6N3Hi//9t2T1P4hVyw7LQoaN/8t2/LL50Zt9j/uennpjTeiPtpY/zTNDz53mXyG7DB2jmy792FRmGnGefu9j3Ilgs/auEXH/sMZc2XjglPktT8+LxvPPjGSN7adf9H9UdQ+E8bIf7tiD9njpn3k69fvK59YOEJtp7FB6VtvvZWrEaoq47TDiHlrgsaferXcePVRsunp9fLmX38rTz10lVxz1WwZM04frx2OOuqoQrS+ebRxNFpfS3uvtLTMpWyEqkAH5YeqYxLcUPWZE06UP31lJ/lwz73kLzsOl98eeLAXqj7ywtuy4PK13jhNp8iqe66W+Y3H98g9mqtPidpPv3BtsnztEll8tfPcseqk9LJas3jdb2TXk78r2x99VXQ/dfkD8v2Hn1fb9j+z7dbK4hlaXd+ZAHDnr+3m2eH4H8u4GefJY69/lKv7iAui9to4xsINm2T14ekykYcuTJYlHSGrN22QhVrdhbXOGy70y2vyx83mfpi65eaWVaeJQ9Xkdr71gu0TVyd8tmd5dP/hlo/kTxsuiYLVJ+48Ulafv73XN9/hsnitfa0V473eatZeeLjatqgvjdqj8Xiv0aNkh9F7J+pDzHzs8rW5NdTeF6bnrO/82vvGqquvrrfV2wAAgByjx6quu/56eeyxx+T3v/99pl/84heyctUqtX+Wo485Ri666CJZuXJlZNmyZXLiiSfKYdN6ZPbsOXLppZc26sxjE6pq42iOOvZYufzySxrBqmWeX3LpRTJtxnS1X5bPRyHeQrXOdc/3zpV33v9IXnztPfnLK5vlhZfflT+9+FZU5rrneyer/UMWLjk/N1RduPiMRpu/vP5m1Ecb65+m3SDR75s6hk88RbbrOkq23WtKI/g8f+V9cubl6+Xki74vc87/rhx7xs1y+EnXypubP2qIg894DDNu0bGfmXu8vH7cMfL0EdPk9eOPkadqz814ZplmWdrYdv5F90cR3zzkIPm7pXvIp67qkv+yfDfpunk/+b+urP2Nq7TV9CZU1cZph1GL75EJP/yr6oh1j8gPrp8kr236lWx+81l5/92/yJ8fv1o2PnSJ3HZp7dxGGa8dzLlW3s200frmKWVs7b2yTstcykaoCnRQXqh6wIFjEtxQ9Vf/8nl5bc995I2994386tNfkOf/9HIiVP35Uy/JeZfe6o2TFAeCi6ZrdTUnXS33rDoletyzeG0UlsZ1tX5rl0hPvZ2pW7P48Hpd3+xy7FWyw4lr5Z7H/9Iou+uR56Nw9ZqfbEy01eWsU+nau7woVP3qbp6vHPNDGT9zQRSa5t1MqGraa+MYUag6M1U+c41skg2y0C2LXCgPReX1UNWpm75mkzy0uPZ4cT1UdeoME6huWnOEV16U+0FrHpsy+9jebHmI2abp7XzjeTvIex98FDGBqn383ocfyfs15t64acEOXt8kczwoYWMG85qat8otu1rm1cbxXlO112JfXmO7T54u259wkuw44wjZc8zY2h/Ke8heo0apbbPYOSXeC9x5TV8ia+z7gnlcXxd3DGPeqvrrxXl/AQAArdFCA+OGG26Q3/72t7Ju3bpMTz75pNx8881q/yzjaucns2bNjq5WvfLKKyMmPJ07d65XNnv27OjqVW2cLLNmnyDXXvutKPBdsmSJLF68WK64YpkcceQRjTbmytgT582T444/QQ4cY65K88cxPj/sC3Le+Reoda67b1sgb23+KLpSdcl3HpAFK++VM5b9m8y/+Acya+E66Tnllqj+7ttOVfuHnHze0txQ9aSzF8kR8y5vMH20saLgc/IZDbsccrrsOG6OfHG/GbLtnpMbwecb727NFQWf9XEaoWqBsV/69RPyzMRueX3aNPn9pAny141/zB3bzr/o/jC0KzSNbc85T/7TFXvIf77yG/JPVx0gE9eOkj1v3Vv+8xXflP+xdHd1LI0bqtrHLjVUVcZphwMv/HHQwRfeKd9aOUuef+JWeeHXy+W398yTby+fKpO7zbfP9DHL5p53Zd1MG61vHtOvCK2vpb1XWlrmUjZCVaCD8kPV0QnfWTGtEar+/rCZ8sh2O8mvd9tLHt1+F3l0j329K1XvevBJmXvGJd44Vhxs6HUNUehxcvTYBCluGHTP2gulZ/qFssYts+XpcQoyV6Sa8NQ+/+ub7zceP7TxlURdtpPrIadW1w7tXV5WqLrdEXfIIUcvjELV+Yt+JEeffpscOvs6GTNzhew96aL6R1p8O/TYxVF7bxwTfjq3TRs2yKb6Y++2aY1Mr/Uxwal2M2FpKFRVA9Vo+Uqgm8F8iLo3+8Fqb7ZNul9aHKomt/N3zt1R3n3/o4gJVe3jd9+rqz9fd8nXvb75ZsqitSZg1OrMa9GEq+Zxs10cYM5stovCS+d5AeY3VHcYu698ef/d5EsnnCZ3PHyPHHbZqfLN08+Rr59ylhxw2qmy15jRsv3I3WX7USNkn4MOVMdJi0NVc9y7r/3aa+Ck2vuB+/qvzXnVYuU9IqGTr1UAAIYQEyAoTAj0yCOPyNq1azOZK1lN+Kr1DzG/q3r88SfIhRdeGH3FP81cyXrCCSdE/6O/1j/LxMlTZNGiBfLrX/9aFixYICtWrIicc845suD8c2V898Sojfm9VvPzApdccokcc+yx6liGCfHOPf8Ctc71g9suiMLA51/ZLH9++V3581/flT+99I78sea5F9+WP2x6K6r/wZoz1P4hc89ZkRuqHjn/crn1Rw/L6vWPRkwfbax/nHZD9JV8a/ikU+Uro4+XL+w3Xbbd69BG8GmuGj37in+T0y75ocy/cF10BenxZ98qR516g8yc9x157Z04+LTjmHGLjv1k9xR5sesgeWrkKPnLAQfJk1NnRuPZK1W1se38i+4PY9Qi/WrNbW9aJh+7aj8ZceMo+e9X7S6737KX/N2qg2Wfxber42TRwtMstq02TtqsOfMzae01967aXx5/8QP59z9uzvbcu3LPzTPlTw9fLPd//9SojzZW2mc/+9lMWvss9vwrj9Y3j+mXd8sdW3uvrNMyl7IRqgIdlBeqjhw1OuHKSw9vhKpvbHxWHt+7S375qc/K46O75flf/sYLVa+8fp1Mmna0N45lQ9WRo06WlV7QcbXMM+3qoappP23xWll5ku1f67P2QplmQtV6faK88by4a3/6tPwf41fIc7U/aMxzE6BedOdvo58AOOZbG6Iy89jtozPrY9etE9q7PBMA7vTVr3u+NGONTD1hSaErVXtmXxy118YxLtiwSW6dWXs8c428sGmN9HhtLpSHonJ7b8oOl1s3bZALnHY9Uahae1wPVRt9a3OIym3bVJhrbi+sObxZH5D1YWvr0u01Zpumt/M1Z+0ob70bB6rm3jjm0h9Hz22Z+VrTPSv39Pr6tNeUz76eTKgaP66HqrUy83pLtzehqr+sbPseeFCsa5Rsd/QcmbT0BPnGKQfK+scfku8/+lOZf8Mq+cqc02TPaVPkG10j5UsHjZDtxu7tj2XeB8wc6q/txHtBPeyNHpv3gwKv/+R7CQAA6A0tNDBM6Lhhwwa55ZZbMpmrQaOwSOmfx1yxetxxx8nChQtl6dKlDebK0uOPP14O7p6k9svSPWlybaw4UDVf+T/llFPkqquuklWrVkW/0XrGGWfI6aefJvPmz2+Um58eOO6449XxjM9vO0zOXXCBWue6c80iebV2DhW6UtXUr7v1bLV/yMUrviO/fuAieean8+TJH06X5x5ZJe/WzuPcUPWcpdfKL599S37zzGuRJStuVMf6x2nXyy6HnNEwfNJpMu602xps8PnKW1tzRcFnfRwzbtGxnzxgrPzmgIPlhYcel98dNEGeOGBc7th2/kX3h2GuyJyw7Gee/ZZ9T/7TlbvLYXfsIwfftl90xeq+y74btdfGyeKGqvaxJhGqKuNo1EBVaZflRyu6ouDUPUY8H/1NXvrT/XLnlSPknbf/FPXRxtKogarSrr8UDlWVvpb2XmlpmUvZCFWBDsoPVQ9KWLL42Cg0TVj/B7+s7trv/7r2xjLGG8eKQ1Xz+KR6EGrrZtSDndrjKFQ9KSr3Qp5GqFqrb4Qp6bGKO/7ah+SLR5rQ9KDoilXDPDY/BxCHqgfVQ1W9f1NtDlHI2SxLfL26vj5xUFRfT7ddvV7t47azdZHk8tLbauVJzTq/PjmHNBMA7rjr1zxfmHqjHD53aRSqLlzxUzlz6d0y/4I75PgzV8vM+dfJ5ONXyZEnfyf68Dly3qVRe20cIwpVZzSfTzNXo264sPb4Qnmw1t8EnlHdIj8Mbd42yK21fg8uqreL+pvgtV7t3qK65vKMC2pdor6pco32gWvKtLaaOFRNbucVZ+wc/Qu7YUJU+/h1c1/7Y/r1d7ZEj39+02Fe375KHk/x8WCOkTWLZzTbReGl87xFu4/vjgLUXz73sDzz8lPywht/lN/+5VdyzU9vkGHHnST7jhmv9mtqvrajUHRVPWh1rKmVRe8DiRDWHyvqn3pNAACA1hwwarTKhI4/+9nPoitRszzwwANR+Kr1zzNm3MFy9NFHy3nnnRddsWqdf/75cuyxx8ahqtIvyxlnnN4IVM1vqJ511plRgGqCU/tzAmeffWbjubki1vy8wNjxE9TxjCjEO+8Ctc713VsvlJff2irPvbRZnn3xXXn2L+/KHza9I8/UbHzhbfnuurvlplvWyM3fOTdqf9i06XLSyafI9BmHe2Ol/eT6CfL6U6vkjw+eLX/ecJ688PBCeebBRYmA7MIVN0eB5Quvboksuepmdax/nHq97DLpjAQTeNr/ld8Gny+/uSVXFHzWxzDjtnNsO/+i+8O443sXyX1PvS4/+M0rCbOXrJH/b8Ie8l+u+Ib806pR8n+uGCG3//ovUXttnCxuaJqnEaoq42RJBKpKfcgdyw7MDVXf27pFtr79a/nwpTvl/S1vRH20sbIkAlWlvj8VDlWVvpb2XmlpmUvZCFWBDsoNVbsOTDjn3NmNK1Xf2/I3eeeDv8kb738kr27+SF56d2viStU7f/orOe7EM70xXHGoah6bsGSxTGvUTZdFa1fJPPN4/qo4UGzUpUxfXA9V6/feWMU1QtXaY3PF6h/++k7j8YZnXo2uYI1CVaePzoaq9ee1dVg5X6sz63mPXpfZ58A4EHXX0WyjUL3ZNun6e+rbt4CsUHXbKd+WY06+LApV33jrfXn9zffk1Tc2yyuvvysvv/qO/PWVt+Tl196OPnyOO3VZ1F4bxzCBZnTbsCEZotZFIeumNTLNKYsD0w1ygVNm2iVD1WZdWcytlFA1tZ0vP2144w9CE6qae/dK1Vfe2iLr5v9dJN1X4wfvac1jwLSNj7fma88cJ2sWT2+OWTvOEs9bsOeoA2T7rm/KtseeLI/8+Rfyuxcfl+8/ertseO6n8uPf3yEzV54vOxxxnNq3qfnaNnNrvj4c5lhvHPu2vXn9JNd7UVZ/AABQnBIaGOZqzvvvv1++/e1vZzKhqwlftf4ho8eNlyOPPFLOPPNMueCCCzznnntu9DfZwd0T1f6a004/Lbpy1gSqCxdeIIdMOTQyd+6J0df8L7vssgbz263matixB09Qx7I+t+0wOee889U61203L5GXaudOWVeqnrngErnmmmtkyYUXSM+MmdFPE5jnc088UR3POnzqvvLY94+RR++eJW9tfrP2d/pf5Ol758ozP50bPbcB2YIr4lD1L69tiSxcfos6ngkoh086PcEEn6av+c1XE2a2wo5hQ1V3XKOsse38i+4P4+47L1aDxQOmnSOnXHSj/PLV52TWz1fIokdXR+WmvTZOlt6Eqto4ISZQ1crzrL50TIFQdbNsfesX8rfXfijvv/9y1EcbK8QEqlp5fysaqmp9G7T3yjotcykboSrQQXmh6v61ctf8U09KhKqvP/F9efmni+Xl53/nhapX33SHTJ56uDeG68RVa2Vhj3l8kqxcs1imNuqmy8I1q+RE83heHKru32OCQTcYia1cFIepUb2598Yq7rRbH45CVfPYBKnm/qp74p8EMI9NoGrCVds+mwlx7LrVpea/cl5cPnXRWrmnPt/ocbQOoT5m2zT7x9zlafVmW98jaxZNz6wPiULVXb7m2XbyNTL7jCsLff1/7lkrovbeOI0rTzfJrdNNWcaVpbXbC6sPT/VJ3kz9tNVOqPrQhY3lXGC+/x+6mcDWzinA3EIftlGwqvRLM9s0vZ2XnrSLvPjGhxETotrHL76+Jbp/6fUPo0D1f//Hm9F9un9a8/VlOK+piDlmms/N8dE8vuJyU2aPPSs+huwYxewwbn/5yui95ZsHjJTtjpojl/3oOnn4zw/I+ifulAW3nym3/OIaufhHS+QzM46XL+z/NfnyqD1k765RyljN17Z5raycFx/LzfnV5m1eM43Xf+q9oPZe0pi/+xgAAPTKyC4TIPiWL18u//7v/66GqdZDDz0U/Wap1j/L6DHj5PDDD5dTTz01Ck8N89V88/dXuswEr2PHHayOkzZ+Qnet/8k1p8ghk6c0yqdO65GTTz45+p1Wa86cOTKhe1Kiv+Zzn6+HeEqd69abLpZNtb/1nt70rjz1wjvy1PPvyO///Lb8rubJP70l37vrXrnkkkujK2TNf55l7k877TQ5eMJEdTzrzFkj5Okfz5CHf3yqPP/770Ye/9FRsvEnh8um5x5oBGRnXnqLLL5qXcM5l92ijhcKPs03qVym/PMjpsjnvnmIfG6PSfLZPSbWHk+Sz+85Rb64/+Gyw9g5jTHyQtW+jm3nX3R/GOu+d7kaLL7yzgdy34MbvHLTXhsniw1KW6GN0w7XXzQ+J1T9D3nvw5dl6+sPyAebn5L3tn4Y9dHGGowKh6pKX0t7r7S0zKVs/RaqcuNWxVt+qGqCjaZj557eCFXffGq9/GXVzvLuz46TTVftJC+99EIiVL3yO7fK6PH+GK449DGPTcDjhiP1gMS0s6Gq0y8OVOrP62FqM5C0QUqzfVFrH3wuCk7/8sbmKEw1jxev+00UtBo/emxT9Fzrm2QDK/O4Hvw05mRDTbet2Q6m3G6PUJ90f8OOkVVvtnU6VE3Wh5gAcIfhX/VsO/lqmXfOVXLK+VfLyQtWBc05+yoZNmWVOo5xwUMmVE2VT49/X3WaW2Ys2iAvrJ5ZezwzvlLVKYtD1fi5PLS40Ucd38pajsL9oLXP0x++5nm6X1ocqia386L5X5UXXv2wwQSr5t5enWqZUHXzi9+rB6vJMVxaKJpkj9G4bfP4MuXm3h5TdY0g0ikrYJ+uLtn3gK7o8a5jxsvnjpwrt/zyevnhE6vlqvsulqkrJsiZt58snzz0uKjNHl37y/Zj9kmMEau/tueZ4DT9mqm/5hqhqtO+VrbQrJs7//r7hr8MAABQlHYllmG+Jv/LX/5SrrvuukwPP/xwFBBq/bMceuhhMm/evCg0NU455ZQoZO2eOElmzJghJ510UqPOPJ4+vfg3bA4YdZB0md9DrD8/eEK3HHts/LutixYtajBXih599DFy4Oixif5pn/v8tnLOeQvUOtdNN1wqz9f+3jNXqi761v1y5hX3yLyL7pJjz/teVG5cdfW10bLNVbImNI6DX30868G1k+SVJy7zPblMHv3B0Y2Q7OSLbpGNb0sUYBqnLTWhqj9eHHyelmCDz/TvmpryYXtPje0zTb64/0z58oHHRoHnTgfPl50nntIYoxmqtmdsO/+i+8NYvXpFMFjc8NjjieemvTZOFi00zaON0w5XL+rOXveP/kPe3/K2bHnrUfnbqz+Q999/MSozfbSxBqP0eZ12M220vpb2XmlpmUvZ+i1U1S61bpX5Hw5RLm07ozx5oep+I0cl9Bx7biNUffHbe8jWR3pEnjlB3v3xaHnxrtmJUPWG762XQ6cf7Y3hmrtyrSycZh7H4cdhSpv9TKi68qTo8WH1MNXc22Co+XyVzDVts8Yp6KzVD8us634h9z7xUvR1f7fuW/c+HYWtbpkqMQ8T9sTzbNS5z2vmrrwnComK9jHt3fWM199uy/pzdztMWxx9/T+r/rBFi2WubavIClW33/tQ2W7KVfKVQ1fULZcvO8xzW/flyVfK9t8cq45jlBWqum3aGarax+lyc3PLs5htmt7O58/9mvz55Q8TTHD60Vt3qd7eeJ7cNvt/eOPE4pAxe78m66NjqnaMxTJeS7UyE0o2x2jdF0fuJtt1HyqfnjFL5t60QC77yUKZc9Nx8rmje2S7gw9rtNun9keH2y8SHce1+a1cVZ97/A8EiXmbNu7raE2trQlezbGfmH9z/c26u69HAABQjHYllmH+0ygTmpr/4T+L+Y+sLrxwido/y+TJU2TWrFlRmDp//nyZPmOGjBk7Pqo7aPTYKEQ98cQTo3pzP23aNG+MIsaNnxAFpybANL/bes4550TLtc/jK2GPkq4Dx6j9jSjEO3eBWue6/trL5U+vfCi/e/4defLPb8sTf3pLfvvHt+Q3z74Zlf/gnp/LuectiH7awMzD3J9Qm8tBY+L1zrJh7cHy0sOnRe69fpw8sq4nevzir86U+68f2QjK5iy8JQov9z/uennh9c0yb/Et6nj/eNj1svPE0xJMwJnlSwccLV8+8DjZfuwc2fHg+bLThFO8/oYZt51j2/kX3R/G9Tddk3O1Zu0U+Pm/NB6b9to4RWkhqtauE644f1Ji3d/96D9k80cfyXsffSDvf/iabH3nEfnbm/fLh+8+Ie9t/SBqY/poYw1G5jyuCK2vpb1XWlrmUjZCVSRo2xnlyQ9VuxImH7mgGapes6PIw9tHPvr5l2XTt76aCFXv//UfZOHl10U/1pwex4pDVb2uwYQ7K+fXHtsAZa2srPVbOc/U18ui+nr7RqhSf94Lt/z7s9FPAdj/rMowz7W2CfXwMw44m+VuCHzPysXRnOP519XDIrcs3CcZJq1ZtFiiK1WdZSZDMn87u/Vx0JSsd2WFqsb2X9tTvvL1fSN7zblNPt+9rGHvud9t1G3/1ewxjL6Eqg/Wv9ofXaHqtEmGqnGbzFsLoarVSl1aHKomt/M5s78mf/zrBwnfmfFf5aOXv63a8uypctMx/90bx4iOH/d1kSMOFu3z+d7xFGmEkqnyFnyx6xuy18iRstuB4+RfJh0pH5t4nPyvScfIl8YdKvtEf2zo/SL194LmutWvVHXnmXj9m/Vw1qvx+oyPebPO8b2yrgAAIJd2JZZx+BFHRv+5k/mPqLIsuegiOWxqj9o/i7mS1ASl06fPqN33RD8H4NYfeNAY6Zk+XWbOnBkFrOn6okz/008/PQpPzVftzXNzdaj5SQFbbq6EndaTPf84xDtPrXN951tL5dvfXpbptNNOjn4/dt68uTI5+p3XudHzGTNmquNZP79lrLz4q1Mj//bt0fLQ2inR4z89NE/uv+nARmh2zLm3RqGqefz8a5tl1gW3quP942HXyc4TT1XtPvmcBvN8pwknyY41O0042WubZsZt59h2/kX3h3H1tdflhqou014bJ0QLUrNo/dvlonOmxOv+0Ufy/pY35YMPXpIP3v+zbHnnMdn61r/L3964R7a8/Zhs3mK2z/+O1t/00caqKu290tIyl7IRqiJB284oT26oun/txe8woeqvX39P3nt/izx/8T8nvLByV/nz6x/Izf/2B9n4yvvyu5ffk29/9ycy/+wrvXGsKMyYqtUlQ8OVJ9bKpi6WNSZISdXpssZFb2SFqjvuupvsNWetfH7iFbn2nnOb7PjVb/jjmOA0SjXNFacmJI2eZNzSwatzpaplwtT6zQ1Zy7pStSxRqJrazmfN+rqcdsJucvqs3eTKc/eUmy/ZT364qisKVmP/LfLRc+fLlt8eLt+Z+d+8MSLmtWKCRa2ugChgNa+56LnyWky1b8U3uvaXHQ7cs/H8M1/fOVGfzwSlq2RuuvxEJzBdOD0ua7xnxOGq/75QL+/DtgIAoNJSV2F1gvnNwrHjxktXdOGGX2++xm+uXs2qL8IEsuZKWLJfPSkAACp/SURBVBOcmp8VOPCgsVG5+R1TE7Ca31k14eaUQw/1+lqf/dy2cvY556l1rrHjDw6aOm2azKgt0/yOq2lvfv/VBKrmJw/SY7nuvf5A+fODcyM/Xz1Rfnn7odHjZ392vKy9bIQcfc6tkRmnx/fGkWffKjNPu14d75Mm+Ow+1aNdSaq1y2LGbefYdv5F94ex7Jqb5Vu3fl9WXLu6ENNeG2cwWnjGYXLFZafL1ZfNkl+sv0D++Mgy+d2DS+X3D10iD/5oodz67fmy/OLj5OILjpGL6kwfbazK0t4r67TMpWyEqkjQtjPKkxeq7rvfAQkmVLWOPe6khiOPOS1RlzbtqPneWBg8TAC4/c67okRmm2rbOs/VU/9rFKiae61+oNtr/5Gy/eh9Gs8/s+fXZMR++yXaAACAwUELDYaCUQeOlsMOmxoxj90689MAU6dOlSlTDo3Oodw612c/9/k4xFPqOuFbC/aWn97YLXde/jW589KdZN2lO8u6S4bLHUt3loUn7iEHHNQdGTWup/HY2H/UBHW8KPiccGrpGqGqUtdXUahan38r+2PMuO6WaeMMRqNHHxg5ZNIYOW1+j5x1ygyZP3uqHHPkIbXXw3gZP350o41LG6uqtPdKy+Ys7TRgQ1Xzxmlp9YYWCqJvtO2MsCLHqtVqqDpx4mSZMGF85OCDD46MrzF/XBhjx3fL2PoHy+ixEyMHjZkkow4a742FwcMEgF/ZaReUqC+h6mANVK299m8+/tr++8iXuvaUfZx6AAAwOGiBAmL9HaqWrUqhKtAX2nulpWUuZRuQoWrRkEoLBdE32nZGvqLHbF6ous++IwFC1TYw21Tb1gAAAIOFFhpgaPrkoddG/yFU2cy47RxbWxegnbT3SkvLXMo24ELVouGUoYWC6BttO6OYIsdufqi6P0Co2gZxqKpvbwAAgMFg3/1MsIoqsOHnYKOtC9BO2nulpWUuZRtQoWqRUMqlhYLoG207o7i8Yzg3VN2n9uJH5ZkA8Ms7DkeJolBV2dYAAACDhnIlFgBUmvZeWadlLmXjSlUkaNsZxRQ5dvNCVRP8AIYWDKL3tG0MAAAAABiatMylbPymKhK07Yx8RY/ZvFBVC4MAAAAAAABQnJa5lG1AhqpGkZBKCwXRN9p2RliRY9UiVAUAAAAAAGgvLXMp24ANVYvQQkH0jbadUR5CVQAAAAAAgPbSMpeyEaoiQdvOKA+hKgAAAAAAQHtpmUvZCFWRoG1nlIdQFQAAAAAAoL20zKVshKpI0LYzykOoCgAAAAAA0F5a5lK2QR2qAoNNuaHqkTLzZz+RM3LMPnt0qs8yGZn5PM9omfjdW2XiQVpdp7U697S+9q+Ig86S2T8bKPu8AhLbm2O0NBzHdeY9/Ccy80itrqYv24lt3P+OXCZnrDhSr2tJfJxof1PESnpfio4ZbXwrezkjV2jtM7jbxCzzu2fJbs5YAABgaNIyl7L1W6j66U9/GqicckPVfLudfWsiVE0/109KQidL7QpVTXjkzKHQSeHAC1UzT/JKOcnVNZbpLsOcWDdOGs16Kvus6IllIChpLDt3nLz9mzFH5cQ+MwwadJTQwmzHxPYu/xg1zPtA7jGZCDuUfWOOsUZ9PEdzPDTfX7L2aV3iGC1T4HgPzaeg9HuoJ2+7NbiviSLzctvrx0Ryblnbv4xQtb3beFAJrXPiNZJuk7//M4815bUX1+UFobHmvg8dU6HPelOXah9a19BrwtRlvhcpywky65PfPvc17ArNXRVv0+T4+fvapc6v4DyS78EAAEDLXMpGqAp0UNmhqvkDOhQy+SfZ5oSjfrJ0tgk1avXOCY1pnw5bkssInWj1Uv1kLLEetbL8E4NiJ1DZivY36xzezr6+zs3KX7Z6DJhtWlaomqDMJ7EsRcH9q5/opo636MSy5OOv3xQ5rso6jhyF9ntqbtE+dOaRuc+T+ysYXuQdN30QXG5vOaFG9tg52y3VrjFOZjvLtG/Wm9d84n06Y27Zr6m84y5fW7bxoBN6fdbq3OM7sY9z9n/oWAu9bmp1yfZmOVnvlznHVAt9i6xr5mvCrGtHQ1XTJt62mRrrkjN3hXldmDGa+yEeI3NfuzL3eyvzMG2HymckAAB9p2UuZSNUBTqoP0NV8zhqW/uDfPbZRzZPVswf6LXHM2t/tGtXr/mhqnPyEenLH/DxCU5oHbIVOYEKKdo/dUJTSF/nZuUve2CHqi3sX3U+/gmiWd/kCedgVeS4Kus4asp7z4ill+seQ/4+STDHg30fCR1jweOmj3p1bIfE+8ocd+HjL7TdHFF44rYrciw4EtsuMLfM11QLy8pS+jYefFoLlp1jIbj/Q8eaqct67aWPPSPUPsV7PcbzSH7Wu9LLcrnHfc5rwmyLDoaqZpsm/86p9ck8jnPmnlbfrzPd/Rbc1664XN/vLc7DfQ8GAKDitMylbP0Wqm6//fZAr/0/45e3jba8svQpVI3+OE/+MR6dIHgnO0nxH+fmj/B6WeoEojmGfjJi6pvLzDlJi+YYqE8rEqzU19uuT3Mu2olGs1203ukTmsTzVH91Ockxm3NVlmXHadRr2zO7n73CJWb6Zi07Kbl/6hLb1Yyj7BOzvuk25url+vIac2tss4z5hPZh3v6NxrZz0042/eOtecJp29fnlVgXZ57efnDr6+vc6Jsxpnps2LFqYxzZrI/qzHrXn/vHhqWtb01je5vnZnx3/sl1Cx8/to8ruT3jPs220XtB/WS8uZ1rde5+rB83E01bZR62Prk963Wu9LGhbuO4v7eeuftFWW5iu9r61H4ObF8rsV0UmdvNZcpToUfeuK6stn65tv1T617XaJPYTqZN/TXibZO8bWyfp5cR93PnWWSfJtctnntj2VnbOWN/ho77IsdAzKyHs655zBztMgvuf6/MbJvaemqvPbNOM4+Mt62t0yXfTy392NHb5q67u641ibHT+yq1v30tbOP68To7dXw11Ldf8jip9VGPnVjm3KN5u9sn3vbmmPT6ZO1rb4xUfVZZeht6zHZoZbsBADB0aZlL2QhVMSiZ8PPTex9euoEXqjonScof0eYP7cRJbYo50XL/ON+tdnIc/wHfPHFs9K+f3Gh/zDeXETrRspw55/1hn3tyUBtrhVNv2jfGdE8c4vVJzz1eJ2cOiedu/9By4vVpbgPTTz+Zip/bNs5yG2UZ/dLzbNDGTlKPgcR2TS+3ziwz0aa2v+zJXzSfep/E3JT5hPZh3v51l2Oem/aJE1CzPKc+0T6eS/IYi9cjcRwk9mVc35x/fYzGHLUxa2XBY9DpH9Wlt6M7lssuqymad6KPGd997O7HuH/4+Elzx4s1Tta9fVVft4jTp76OjW2Y3ofpZZj2qVChUe5u96xtnG5n1zm4X+rP3eUmtpHd9k770PZttEmFG6qM7eaIQr3UNskdN5p/PG56TpY6Rno7aOvubjvv+Ku1TRzPzjbK28Yl7tPENquVz669L9h11bddeH/qx32xYyBi1jXxegmo7zs7TtH975VF28OZT3p/RPO1298+d+tT6vPSj6lQ3/RyHKl1jQVeE6Z9als0BZajsvvP9Kstq9D+qfUJtsuYe2rbm31l96m734L72tt/qXqnLLgNPa1uNwAAhi4tcykboSoGpUqEqurJSZL54ztUn1A/EY3+KHf+yE//AW+ep+ubywidaCny1iFxQpstOjHxTijMSUb9cdY40fLTJ0JK/zp9OfEJWmMd6ie2acmTIH/scD97wpTetqllK9RjILE9zNjKPjPbIrONs58T20yZT2gfhupU6e0WL6+5vdJzLDIXp51WnyhTxqzLPgbdOeU9d2UsK+sYNfNsLL8pfPykJPa5pfSN5pCxHso2TL6HmPVK93X3aZ0yTu42TmybUB/bz3le5DhujNOUfF3775cJoe3mtjPLygpanLIspq1/nGeNkd7+2nHnlCW2U3r+Ofu28P5xxi3ax2k3coXpWxsj2gbpOdXl7k8zB1Pm9C14DETMfJR9kBavS2p+Bfe/V2b65b723G2ZsW0U/jEVHxPa9ogl95mhrmu039yy1DFl6lPboim9PnmSx2N6PtE6quuiMNsib+5War8k9knBfe3y6ovOo6H4fgcAYKjTMpeyEapiUKrklarKSYz541sLgBLqJy3RCYV68tJchjZWchlF/lgPzzkp5+QgOplwTjCi53ZM5wRKOdn026efO/2Dy4nXp7ENspaV4IxtFepnt53dJqllK7RjIDqZbOzrjDES80nvB9On/jy0Lbxx0nL2ryJ5QunMI9Wu+FycMbT6RJkyZvDYSK9f3nOXsizDG7/+OLidrXhML9hocMZLlCX7JI+fWGO/mPml5pHcZ/4ykvWxxDKC27jZ3/RJtsnu4/bz64seOz5tXazgdnPK/GVlHAuZ9OMqa27Jcm1ZTlliO6WXY9oll5u5jXP2j+1XfJ/aZdfmFG27+nPz0xvafsvdn/5xX/QYiJi55bQ166h+5hbc/97+VJYZtzG/kW7WpSB13ul9bZ4391eSmW+yLmtdc18TZp20bRTxlxOmzDl3P9njya8r9nqO913mdu7Faz29jMLvKw2tbjcAAIYuLXMpG6EqBqWioeoJ8xcknp+0YFXieVpvQtWf3X9/pnTb1kNVR3SCmfxj3PxhHfrjPGL+qHf/II/GMX9w108qG3X6SVRyGeaP9eRJdUI0dqBeEZ0wpPvU5hydMKROSOK2do7ufON1ac6zdpJp+qfmk9k/uJz0SVB6WWYb2bZuG60so19tnhMT29i2K3YClqyP+3gnZYn5xHNptjHP3X3g7OfG8WLLU8vzThqTgvtXO15MWWM8Zx62vkHbNun1qknML70P4jGa9fnr5x9D7vzynru0+dcktrfp7z5Ots8/ftL8+diT82i97Hp6+8Vddjx+Yxun2ybm75Q529AbI7iNa6L+5j/Tc5aT18dwl5uYl7aNAtvX4YUZ0bj1ebmPo3pnzERdavmpdfGYvs57eGJfOby5WaZ/o328bPczIbHtonna9U4fL6av+7zGHdvt24Z9ap5H37aoz90+14/F8P5Uj/uCx0DMtM2qq0lsx7Ri+9/fn3E/fX01yv6yTN/QMWXm5NQnmXGddQutqzfH1DZOzSMptZxcOftEVeujbPtIaO5eXVNyvwX2dcYYwfeYqCy1DT2BdQIAoGK0zKVsAypU/b8nX9MSbQxUQyuhatekKY3nZYWqbmBqHj/wy9/IhseekI1/3CTPbfqrvPTqa+WHqgpzIpT9h3XM/IEet4n/EE+fvJl6e2WFNlazvxE4SesLc6JRn0OkcZIVn5DY8tm1E9zkCX/6xM62bZZHJ4u5/UPLccZInAw12/vbLTU3K9DP3Q9+4FEryzhJcvdPYwzlJDUxfk3yZN3M192vzn6O5hzYFhmBQELW/vVOFg33GAsdb/E+07e9s6z0fkjsg9rY6n9U5bSvl9nx/GPInV/ec1fG/BPb2/R35t+L4yfNO15S697om9pnyXkmt3GizvTzlm/GjreDfoyGtrFT31If26a+/RPbNe6rb/vmmF59jZl/MPDI2m7pdollpeftc9/Hstp7c2twtoNd99r2UsdLbKf08euOo5Ql+sbLscsoZZ/Wt1l4m6afN8ez/YLHfUYfjRknsz79npceL7Ecd7s06fsz8NrzOPtGqc8+pkLvW0bqfSlvXUPvJant7dO3jS41r0JqfUKfX0Vfzw79PUJZn4wx1P0e2oZppq33HgwAQDVpmUvZBlSoOuGif5MJF6+PHHxR0wSXqa/fa2N4Zq+WB5aOc8rGydIHHpCl45w29XbPPvts3WqZ7dTNXq203362rG60r1k9W8YtfcAZo+6BpTJOae/OafbqWlmtf3J8hGih6qhLfiLjlnxfJp9/k8w844ooULVssDphxuleP1dWqGqvPLWuu2ltIzQ199+5/ha57sbVcvPq78kta26X1beta9S7yg5V809IaqIThiInG6ZN84/56MQzPVaW0EkJ2ip4Yt8J5gSu5P0fnex36qSwDfMf0Mx7RtvWNzvE6eg+dTSWG71Xthq4DB3t3P7V3cY5gVy/C4eqmWrviVo4H+1n+5lf1rFkjpnMscz8Wzme2hCqDjq93OcAAAxRWuZStgEVqj763Cst0cbwpEPVcUvlgUbQ6Wi0my2ra/WztYC0zm0XjWPGrIeqq2e74zpt3MfRspYmQ9mEZKgLX2+vVB2+Z/OxJhSqZj03j994Z7OnI6EqKq8RfrcpMAlpLLv0k9LenBwXkT5JT/5DQlW0K2BTr7BqaNc+zRMvd6JZ5wEfnsTHYyO4qivnH03auf0H0zYuWXQFYX8c14Av/B4MAED1aJlL2Ybsb6oufUAJKx9YKkvNVaHpcnOVqA1V3RA2EcCaK03dsFMPVb2xg6GqFp6mlwNNK6Gq+9yE8e7ztKKhqsuGqh9s2ZpAqAoMQKmruzkBHeKi0Mvsa4KvtmEbAwAAYADSMpeyDf3fVE2HpM8+27yatB6GNtvNlqUPrJbZtcdeOJpgQk8TfjplRa5Uddo35oReKRqqurRjyLJttFDVhKPu1/21ehOqbv3oowRCVQAAAAAAgM7TMpeyVeo3VaPfRl3qhKxu4Bo9dq4eNcGqDVwbzO+x2qtI48DU/EyAHSMcqsbcNuqVrTXJMaDpTaia/vkIl23T2ytVs6TbFg1Vr732WgAAAAAAALSgsqGqFnaFaGN43OA00gw6zX8Q1QgwbTvnXgs80793aoJRN1T12jtf+Xf/M6vknNCqTl6pWqaioSo3bty4cePGjRs3bty4cePGjRu31m6VDVVLpYSicYBa/9//Z5ufAnACUhum2tC1HoImx3WuVE3/jmr9qtXVs/2rWdOhajSP+k8RpOdox3KvboWvk1eqalegutLtQ4qGql/60pcAAAAAAAAqw9zeeuutPqlsqKpdQRiijdHQCEnj540ws15nwsvE1aK2vQk7baiaDjsjfqhqx7HLaJS5yzGP3VDVLjcym/+cqkWdvFLVBKcP/PI3suGxJ+Q3Tz0nG/+4SZ7b9Fd56dXXCFUBAAAAAABKQKgakBeqlvqbqjYkrT93w0zzuBF2Ou1tcJoor7f3gtBAqBpf0Vobq1bfaJ8KVceNawatjVDVPOcq1UKKhqru//6vXaFq2TZZoep3rr9Frrtxtdxw81q5efX35JY1t8vq29Z1NFR99dVX1fIiTF8rq14rz+P2yxvD1mvtsvoWGTOP1g8AAAAAAAwshKoBeaGqFnaFaGM0OCGpFX81v/Y4Ci5TwWetfSNMDX01P7JaZjuhalRWG3Np9ButJiBtLises76sWrl5Hv2W62o3QHWuVCVYLaSVULVr0pTG8+F7Nh9rskJV87/7azodqhaR1d4dKy3dz32cZuvSbbXnLreuaL/QeEbeOHn9AQAAAADAwECoGpAXqpbKDUnrTJiplUXBqtLe0q5UjfrVQ9K4zAanya/xN8Z3ypriADYKZTPbQKOFqqMu+YmMW/J9mXz+TTLzjCuiQNWyweqEGad7/VyhUPWDLVs9nQpV+xoO9jaczCov+tyVVeeWm8d5svoWeQ4AAAAAAAYmQtWAjoaqGNJ6e6XqSQtWJerTQqHq1o8+8nQiVLXBoLkPcfukafVuWVZ/W553n2bK89h2bh/7OFTmsmOFaP22226cXPGYqV8n87bbLlE3b12y/2NXjEvUW9uNu0IeM20eu0LGOWPk9W8uu27dvER9EaH5J+tj7hxC82usU5qzjnnz7+v2K1IfWv/ttpsn6wLLz6svOn8AAAAAQLkIVQMIVVGWVkJV93lvQ9WQdPuQVkNVE+poj9NCdYZWr42dbpcuz7ovQmtrylxafbrMla7Pe25sN29drfwxueIKc6+HkpYN4NbN00O9detqY2SEgnG7ZH/bzwZ16edF5M3fhpHpOWuy1s8VhYz14LTV+fd2+4Xq89bfzLexvaNtUWs7rtkmr95VZPsAAAAAAMqRF6red999armLUBXIUTRUbZUWqpap1VDVZQLCkFbb2vsij4vcW+a5pmidO1aa28e2beV5HNbFQVwczoVDVcOEcOnQcNwVj8VhnxkjEKoabv84xEsuM5pHzhhWkflr8w0JtY9DxWbo2Jv592b7ZdW3uv9sOJu9fuF6o9XtCQAAAADonVCoagJVS6u3CFWBHFUNVbVyI69Oq3fLsvrb8rx7y31uHlvpOldWeRHuMrJo/YxCoZwWIjpXN+YFiun+2jK1ZRShjmVD0OgqTrsNAldi5iw7Cjedr/e3On+tLi7L3n559Y12ylzS8q40za3P2T4AAAAAgPJkhapuoJoXrBKqAjlM+Nku2vLK0tdQNUTrY2S1cZ9n1RW9t0LP03VZZX3RynihUM5cnWjGMtJXKbpXLmaFfln90yGevVIyLxzUaPO34+cFoaH1sxoBrRPIFp1/X7Zfke3bqMvZbtE8MvqH6kPzBwAAAAC0hxaqpoPU9PM0QlVgiOpLqGqYkEcrz2Lbp+9Dj93nRe+t0PN0nS1zaWWurH5F2L5WkVDOiAI2+5uiqZAvFPpZbn8jvvrRzusxuWJe766G1OafHYQmy1zp+VmNr+Cn5tXq/FvZfq1sX239XdH8A+udV29lbR8AAAAAQLlCoWpemUWoCgxRfQlV3YBQk9XHvc8rSz/OKtPG6M1zTVabUF9bl74PyQvlLDfYiwK22tiazK+QB4LBRn0vQjtt/ukrSZtl2eGhNj9tnCx583fHz9t+rWxfbf2tsgJVQ9s+AAAAAIDyZYWq6bJQeSVC1WuvvRaonN6EqjZUso+z6tLc8qw2Vqitfa6Nkdc2r16TVVekPOuxJhTKWY2vt2eEhnmBW6H+yhxsqBmaX1bfKJh05pR1xamRNb9QH1feNuzz9gvUZ267qDwnRC4aqObMHwAAAABQHi1UbVUlQlXtKj5gqOtNqJpmwkJLqzfSdXkBo63X2rlleeOa5+n2bln6Pt1Oq7O0cm2c0HNDvxoyDucaIZpTF/pNzXToV6R/YvmZYWd2qBqaf9w3NYcW52e/3p91lWpo/n3dfkXqw/vPbrfe1rc2fwAAAABAeQhVAwhVUXV9CVVtyJNXpslrY+u18Xvz3Nxbbr1bl36crtek27j9bLlWppUDAAAAAICBg1A1gFAVVddqqGoDwbxQMK9dqDyrX1YfI9SviLyxWyl39XY+AAAAAACgfxGqBhCqoupaDVUBAAAAAACqgFA1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+QtUAQlVUHaEqAAAAAACAj1A1gFAVVUeoCgAAAAAA4CNUDSBURdURqgIAAAAAAPgIVQMIVVF1hKoAAAAAAAA+LVS97777vLJQOaEqMEQRqgIAAAAAAPiyQtV0gKqVWYSqwBBFqAoAAAAAAOALhao2RE0/TyNUBYYoQlUAAAAAAACfFqoabpAaClQNQlVgiCJUBQAAAAAA8GWFqkaRQNUgVAWGKEJVAAAAAAAAXyhUNfICVYNQFRiiCFUBAAAAAAB8eaFqEYSqwBBFqAoAAAAAAOAjVA0gVEXVEaoCAAAAAAD4CFUDCFVRdYSqAAAAAAAAPkLVAEJVVB2hKgAAAAAAgI9QNYBQFVVXNFTlxo0bN27cuHHjxo0bN27cuHGr0k0LSVtFqAoMUUVDVe2NAQAAAAAAANkIVYEhilAVAAAAAACgPQhVgSGKUBUAAAAAAKA9CFWBIYpQFQAAAAAAoD0IVYEhqqxQ9b777mvQ6gEAAAAAAPpbp/MLQlVgiCojVO30GxIAAAAAAEBvdTLHIFQFhqi+hqqdfCMCAAAAAAAoQ6fyDEJVYIjqS6jaqTcgAAAAAACAsnUi1yBUBYaovoSqRifegAAAAAAAAMrUqTyDUBUYovoaqhqdeiMCAAAAAADoq07mGISqwBBVRqhqdPINCQAAAAAAoDc6nV8QqgJDVFmhKgAAAAAAAJIIVYEhilAVAAAAAACgPYZsqGrYYFULnIChLhSoWoSqAAAAAAAAretUoGoQqgIdRKgKAAAAAADQHkM6VDVMqKQFTsBQlxeoWtobAwAAAAAAALJpGUu79EuoatgrVoGqKBqoWuZfVwAAAAAAAJBPy1baqd9CVcOETISrGOrsca69BorQ3igAAAAAAADQ+TDV6tdQ1bKhEzAUacc8AAAAAAAABq8BEaoCAAAAAAAAwGBBqAoAAAAAAAAALSBUBQAAAAAAAIAWEKoCAAAAAAAAQAsIVQEAAAAAAACgBYSqAAAAAAAAANACQlUAAAAAAAAAaAGhKgAAAAAAAAC0gFAVAAAAAAAMGb977EH5/h1r1ToAKAuhKgAAAAAAGDK+f8cNcvGiU9U6ACgLoSoAAAAAABgyCFUBdAKhKgAAAAAAAAC0gFAVAAAAAAAAAFpAqAoAAAAAAIYM/qMqAJ1AqAoAAAAAAIYMflMVQCcQqgIAAAAAAABACwhVAQAAAAAAAKAFhKoAAAAAAGDI4DdVAXQCoSoAAAAAABgy+E1VAJ1AqAoAAAAAAAAALSBUBQAAAAAAAIAWEKoCAAAAAAAAQAsIVQEAAAAAwJDBf1QFoBMIVQEAAAAAwJDBf1QFoBMIVQEAAAAAAACgBYSqAAAAAAAAANACQlUAAAAAAAAAaAGhKgAAAAAAAAC04BuHHiP/P5IbpTCvncFYAAAAAElFTkSuQmCC" alt="" width="792" height="589" />
测试模块 |
测试输入 |
预期结果 |
运行结果 |
bug跟踪 |
复利计算终值 |
(本金,年限,利率) |
终值 |
||
1 |
(10000,10,3) |
13439.16793441223 |
√ |
|
2 |
(-1,10,3) |
弹出提示:请输入正确的本金 |
旧版本没有提示 |
由于没用做窗口所以无法弹出窗口告诉用户出错,但是本程序纠错是用正则表达式,回调了所应用的计算函数。 |
3 |
(100,-1,3) |
弹出提示:请输入正确的的年限 |
旧版本没有提示 |
由于没用做窗口所以无法弹出窗口告诉用户出错,但是本程序纠错是用正则表达式,回调了所应用的计算函数。 |
单利计算终值 |
(本金,年限,利率,次数) | 终值 | ||
1 |
(10000,10,3) |
19000.0 | √ | |
2 | (-1,10,3 ) | 弹出提示:请输入正确的本金 | 旧版本没有提示 | 由于没用做窗口所以无法弹出窗口告诉用户出错,但是本程序纠错是用正则表达式,回调了所应用的计算函数。 |
3 | (100,-1,3) | 弹出提示:请输入正确的的年限 | 旧版本没有提示 | 由于没用做窗口所以无法弹出窗口告诉用户出错,但是本程序纠错是用正则表达式,回调了所应用的计算函数。 |
单元测试小结:
1、个人理解的单元测试就是可以找出程序在数据和逻辑上在编译时无法找出的的一些错误,并查具体位置。
2、本程序使用了正则表达式< "^\\d+(\\.\\d+)?$" >在一定程度上可以大大降低在单元测试前数据出错的问题。
3、本程序在输入数据上没有对“0”值进行控制。因为数据输入的方式是以字符串的方式进行输入然后再通过数据转换转成整型或者双精度型。
正则表达式的函数的pattern() 返回正则表达式的字符串形式,需要返回Pattern.complile(String regex)的regex参数
Matcher类提供三个匹配操作方法,三个方法均返回boolean类型,当匹配到时返回true,没匹配到则返回false,matches()对整个字符串进行匹配,只有整个字符串都匹配了才返回true
参考帖子:http://www.cnblogs.com/ggjucheng/p/3423731.html
public static boolean isNumeric(String str)
{
Pattern pattern = Pattern.compile("^\\d+(\\.\\d+)?$");
Matcher isNum = pattern.matcher(str);
if( !isNum.matches() ){
return false;
}
return true;
}
代码小结:
1、代码在实现上还有很多地方可以修改,有的地方的代码不断复用,定义的数据类型没有实现封装,等等。
希望助教,老师可以给点在代码优化上的意见~
完成情况:
代码已提交至github
地址:https://github.com/sunhailin-Leo/Compounding-test-1<已更新5.0>
此前代码仅为一个.java文件,此次提交将整个工作文件提交至github
BUG:容错功能还没完善<0320 1800前>.
容错功能已完善但不完美,如果在调试窗口使用组合键会报错。<0320 2100>
正则表达式实现数据的错误检测。<0331 2030>
package Calulation; import java.util.Scanner;
import java.util.regex.Matcher;
import java.util.regex.Pattern; public class Calculate {
static Scanner scanner = new Scanner(System.in);
//正则判断是否为数字选项
public static boolean isNumeric(String str)
{
Pattern pattern = Pattern.compile("^\\d+(\\.\\d+)?$");
Matcher isNum = pattern.matcher(str);
if( !isNum.matches() ){
return false;
}
return true;
} //字符型转整型
public static int StringToInt(String intstr)
{
Integer integer;
integer = Integer.valueOf(intstr);
return integer.intValue();
} //字符型转double型(该功能尚未使用)
public static double StringToDouble(String str)
{
Double data;
data = Double.valueOf(str);
return data.doubleValue();
} //double型转字符型(该功能尚未使用)
public static String DoubleToString(double value)
{
double dd = value;
String str = String.valueOf(dd);
return str;
} public static void main(String[] args)
{
System.out.println("请选择单利计算或复利计算:(复利选1,单利选2,本金计算选3,投资预期年份计算选4,投资预期利率计算选5,定额复利投资递增性选6,贷款月还款金额计算选7)");
String choice = scanner.next();
if(isNumeric(choice))
{
switch(StringToInt(choice))
{
case 1:
CompoundingCalculation();
break;
case 2:
SimpleInterestCalculation();
break;
case 3:
PrincipalCalculation();
break;
case 4:
CalculateRewardTime();
break;
case 5:
CalculateInterest();
break;
case 6:
IncreasingInterestInvestmentQuota();
break;
case 7:
MatchingInterestRepaymentCalculator();
break;
}
}
else
{
System.out.println("输入错误!,请重新输入!");
main(null);
}
} public static void CompoundingCalculation()
{
String money,rate,years;
int Year=0;
double Rate=0,Money=0,sum1=0;
System.out.println("请输入本金:");
money = scanner.next();
if(isNumeric(money))
{
Money = StringToDouble(money);
}
else
{
System.out.println("输入错误!,请重新输入!");
CompoundingCalculation();
}
System.out.println("请输入存款年数:");
years = scanner.next();
if(isNumeric(years))
{
Year = StringToInt(years);
}
else
{
System.out.println("输入错误!,请重新输入!");
CompoundingCalculation();
}
System.out.println("请输入年利率:");
rate = scanner.next();
if(isNumeric(rate))
{
Rate = StringToDouble(rate);
}
else
{
System.out.println("输入错误!,请重新输入!");
CompoundingCalculation();
}
for (int i = 1; i <= Year; i++)
{
sum1 = Money*Math.pow(1.0 + Rate, Year);
}
System.out.println("存入第" + Year + "年后的存款总额为:" + sum1);
main(null);
} public static void SimpleInterestCalculation()
{
String money,rate,years;
double Money=0,sum1=0,Rate=0,interest=0;
int Year=0;
System.out.println("请输入本金:");
money = scanner.next();
if(isNumeric(money))
{
Money = StringToDouble(money);
}
else
{
System.out.println("输入错误!,请重新输入!");
SimpleInterestCalculation();
}
System.out.println("请输入存款年数:");
years = scanner.next();
if(isNumeric(years))
{
Year = StringToInt(years);
}
else
{
System.out.println("输入错误!,请重新输入!");
SimpleInterestCalculation();
}
System.out.println("请输入年利率:");
rate = scanner.next();
if(isNumeric(rate))
{
Rate = StringToDouble(rate);
}
else
{
System.out.println("输入错误!,请重新输入!");
SimpleInterestCalculation();
}
interest = Money*Rate*Year;
sum1 = Money+interest;
System.out.println("存入第" + Year + "年后的存款总额为:" + sum1);
main(null);
} public static void PrincipalCalculation()
{
String ExpectedPrincipal,rate,years;
double Rate=0,ExpectedPrincipalMoney=0,money = 0;
int Year = 0;
System.out.println("预期金额");
ExpectedPrincipal = scanner.next();
if(isNumeric(ExpectedPrincipal))
{
ExpectedPrincipalMoney = StringToDouble(ExpectedPrincipal);
}
else
{
System.out.println("输入错误!,请重新输入!");
PrincipalCalculation();
}
System.out.println("请输入存款年数:");
years = scanner.next();
if(isNumeric(years))
{
Year = StringToInt(years);
}
else
{
System.out.println("输入错误!,请重新输入!");
PrincipalCalculation();
}
System.out.println("请输入年利率:");
rate = scanner.next();
if(isNumeric(rate))
{
Rate = StringToDouble(rate);
}
else
{
System.out.println("输入错误!,请重新输入!");
PrincipalCalculation();
}
money = ExpectedPrincipalMoney/Math.pow(1.0 + Rate, Year);
System.out.println("初始本金为(复利算法)" + money);
money = ExpectedPrincipalMoney/(1+Rate*Year);
System.out.println("初始本金为(单利算法)" + money);
main(null);
} public static void CalculateRewardTime()
{
double year = 0,ExpectedPrincipalMoney = 0,Rate = 0,Money = 0;
String ExpectedPrincipal,rate,money;
System.out.println("预期金额");
ExpectedPrincipal = scanner.next();
if(isNumeric(ExpectedPrincipal))
{
ExpectedPrincipalMoney = StringToDouble(ExpectedPrincipal);
}
else
{
System.out.println("输入错误!,请重新输入!");
CalculateRewardTime();
}
System.out.println("请输入年利率:");
rate = scanner.next();
if(isNumeric(rate))
{
Rate = StringToDouble(rate);
}
else
{
System.out.println("输入错误!,请重新输入!");
CalculateRewardTime();
}
System.out.println("本金");
money = scanner.next();
if(isNumeric(money))
{
Money = StringToDouble(money);
}
else
{
System.out.println("输入错误!,请重新输入!");
CalculateRewardTime();
}
year = log((ExpectedPrincipalMoney/Money),1+Rate);
System.out.println("年份" + Math.ceil(year));
main(null);
} public static double log(double value,double base)
{
return Math.log(value)/Math.log(base);
} public static void CalculateInterest()
{
double ExpectedPrincipalMoney = 0,Money = 0;
int Year = 0;
String ExpectedPrincipal,years,money;
double rate = 0;
System.out.println("预期金额");
ExpectedPrincipal = scanner.next();
if(isNumeric(ExpectedPrincipal))
{
ExpectedPrincipalMoney = StringToDouble(ExpectedPrincipal);
}
else
{
System.out.println("输入错误!,请重新输入!");
CalculateInterest();
}
System.out.println("请输入年份:");
years = scanner.next();
if(isNumeric(years))
{
Year = StringToInt(years);
}
else
{
System.out.println("输入错误!,请重新输入!");
CalculateInterest();
}
System.out.println("本金");
money = scanner.next();
if(isNumeric(money))
{
Money = StringToDouble(money);
}
else
{
System.out.println("输入错误!,请重新输入!");
CalculateInterest();
}
rate = Math.pow((ExpectedPrincipalMoney/Money), 1/Year)-1;
System.out.println("利率" + rate);
main(null);
} public static void IncreasingInterestInvestmentQuota()
{
System.out.println("每年定额选1,每月定额选2");
String choice = scanner.next();
if(isNumeric(choice))
{
switch(StringToInt(choice))
{
case 1:
EachYear();
break;
case 2:
EachMonth();
break;
}
}
else
{
System.out.println("输入错误!,请重新输入!");
IncreasingInterestInvestmentQuota();
}
} public static void EachYear()
{
double EachYearQuotaMoney = 0,Rate = 0,sum1 = 0;
int Year = 0;
String years,EachYearQuotaMoney1,rate;
System.out.println("每年定额资本");
EachYearQuotaMoney1 = scanner.next();
if(isNumeric(EachYearQuotaMoney1))
{
EachYearQuotaMoney = StringToDouble(EachYearQuotaMoney1);
}
else
{
System.out.println("输入错误!,请重新输入!");
EachYear();
}
System.out.println("请输入存款年数:");
years = scanner.next(); // 存钱年数
if(isNumeric(years))
{
Year = StringToInt(years);
}
else
{
System.out.println("输入错误!,请重新输入!");
EachYear();
}
System.out.println("请输入年利率:");
rate = scanner.next();
if(isNumeric(rate))
{
Rate = StringToDouble(rate);
}
else
{
System.out.println("输入错误!,请重新输入!");
EachYear();
}
sum1 = EachYearQuotaMoney*(1+Rate)*(-1+Math.pow(1+Rate, Year))/Rate;
System.out.println("存入第" + Year + "年后的存款总额为:" + sum1);
main(null);
} public static void EachMonth()
{
double EachMonthQuotaMoney1 = 0,MonthRate1 = 0,sum1 = 0;
int Months1 = 0;
String EachMonthQuotaMoney,MonthRate,Months;
System.out.println("每月定额资本");
EachMonthQuotaMoney = scanner.next();
if(isNumeric(EachMonthQuotaMoney))
{
EachMonthQuotaMoney1 = StringToDouble(EachMonthQuotaMoney);
}
else
{
System.out.println("输入错误!,请重新输入!");
EachMonth();
}
System.out.println("请输入存款月数:");
Months = scanner.next();
if(isNumeric(Months))
{
Months1 = StringToInt(Months);
}
else
{
System.out.println("输入错误!,请重新输入!");
EachMonth();
}
System.out.println("请输入月利率:");
MonthRate = scanner.next();
if(isNumeric(MonthRate))
{
MonthRate1 = StringToDouble(MonthRate);
}
else
{
System.out.println("输入错误!,请重新输入!");
EachMonth();
}
sum1 = EachMonthQuotaMoney1*(1+MonthRate1)*(-1+Math.pow(1+MonthRate1, Months1))/MonthRate1;
System.out.println("存入第" + Months1 + "月后的存款总额为:" + sum1);
main(null);
} public static void MatchingInterestRepaymentCalculator()
{
String money,rate,years;
double Money = 0,Rate = 0,interest,Repayment = 0,Repayment1 = 0,sum1 = 0,sum = 0;
int Year = 0;
System.out.println("请输入贷款金额数");
money = scanner.next();
if(isNumeric(money))
{
Money = StringToDouble(money);
}
else
{
System.out.println("输入错误!,请重新输入!");
MatchingInterestRepaymentCalculator();
}
System.out.println("请输入贷款年限");
years = scanner.next();
if(isNumeric(years))
{
Year = StringToInt(years);
}
else
{
System.out.println("输入错误!,请重新输入!");
MatchingInterestRepaymentCalculator();
}
System.out.println("请输入贷款年利率");
rate = scanner.next();
if(isNumeric(rate))
{
Rate = StringToDouble(rate);
}
else
{
System.out.println("输入错误!,请重新输入!");
MatchingInterestRepaymentCalculator();
}
//复利
for (int i = 1; i <= Year; i++)
{
sum1 = Money*Math.pow(1.0 + Rate, Year);
}
Repayment = sum1/(Year*12);
interest = Money*Rate*Year;
sum = Money+interest;
Repayment1 = sum/(Year*12);
System.out.println("每月需要还款(单利)" + Repayment1);
System.out.println("每月需要还款(复利)" + Repayment);
}
}
旧版本没有提示
<更新日期03-31-2016> 复利计算5.0 <已改进>的更多相关文章
- 复利计算--4.0 单元测试之JAVA版-软件工程
复利计算--4.0 单元测试-软件工程 前言:由于本人之前做的是C语言版的复利计算,所以为了更好地学习单元测试,于是将C语言版的复利计算修改为JAVA版的. 一.主要的功能需求细分: 1.本金为100 ...
- 复利计算6.0—软件工程(web版本)
复利计算再升级------------------------------------------------------------ 客户在大家的引导下,有了更多的想法: 这个数据我经常会填.... ...
- 复利计算4.0单元测试(c语言)
——————————复利计算程序单元测试报告—————————— ————————————4.0 单元测试—————————————— ————————————————要求—————————————— ...
- 复利计算5.0(改成Java版本)与 单元测试
//由于C语言版本不方便单元测试,所以改成了java版本,部分代码如下:import java.util.Scanner; public class FuLi{ public static void ...
- 复利计算1.0,2.0,3.0(java)
程序源代码: import java.util.Scanner; public class ch { public static void main(String[] args) { Scanner ...
- 2018/03/31 每日一个Linux命令 之 date
date 命令主要用于查看和修改时间和时区 -- 这里主要学习基本的查看和设置时间和时区的方法. 直接显示日期 date '+%D' 效果 vagrant@hong:~$ date '+%D' 03/ ...
- 复利计算--结对项目<04-11-2016> 1.0.0 lastest 阶段性完工~
结对项目:Web复利计算 搭档博客地址:25江志彬 http://www.cnblogs.com/qazwsxedcrfv/ 个人摘要: (2016-04-09-12:00)补充:之前传送门没做好, ...
- 复利计算- 结对2.0--复利计算WEB升级版
客户在大家的引导下,有了更多的想法: 这个数据我经常会填.....帮我预先填上呗?...... 把界面做得简单漂亮好操作一点呗? 能不能帮我转成个APP,我装到手机上就更方便了? 我觉得这个很有用,很 ...
- 复利计算软件v3
#include <windows.h> #include<stdio.h> #include<math.h> void count(){ int a,b; dou ...
随机推荐
- HTML实现点击时的阴影(:active)(已解决iOS微信上无法使用)
一般是用这个委类:active 参考:http://www.w3school.com.cn/cssref/selector_active.asp 但是业界上实现的效果中,今日头条的手机端网页却不是这样 ...
- 前端模块化工具-webpack
详解前端模块化工具-webpack webpack是一个module bundler,抛开博大精深的汉字问题,我们暂且管他叫'模块管理工具'.随着js能做的事情越来越多,浏览器.服务器,js似乎无处不 ...
- Derivative of the softmax loss function
Back-propagation in a nerual network with a Softmax classifier, which uses the Softmax function: \[\ ...
- iOS-不用网线搭建IPv6网络测试环境
前言 从6月1日开始苹果要求之后审核的项目必须支持iPv6,如果不支持将被拒绝,掘金最近一次审核被就被拒绝了....理由为下: Apps are reviewed on an IPv6 network ...
- Java 对象 及 对象的应用
http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=30149799&id=4942380原文地址
- Python Day9
Paramiko模块 paramiko模块基于SSH用于连接远程服务器并执行相关操作 基于用户名密码连接: import paramiko # 创建SSH对象 ssh = paramiko.SSHCl ...
- Thinkphp中controller控制器根据curl函数请求数据
public function member(){ $url="http://aitequn.tjnit.com/UserAction_findAllUser"; $ch =cur ...
- 不把C作为第一门语言是个好主意么
---------------------------------------------------------------------------------- 不把C作为第一门语言是个好主意 ...
- 10月25日下午PHP静态、抽象、接口
多态(运行多态)概念:当父类引用指向子类实例,由于子类里面对父类的方法进行了重写,父类引用在调用该方法的时候表现出的不同状态.条件:1.必须发生在继承下2.必须重写父类方法3.父类引用调用该方法 如果 ...
- 面试题目——《CC150》数组与字符串
面试题1.1:实现一个算法,确定一个字符串的所有字符是否全都不同.假使不允许使用额外的数据结构,又该如何处理? 注意:ASCII字符共有255个,其中0-127的字符有字符表 第一种解法:是<C ...