本题亦是非常裸的CRT。
CRT的余数方程![](http://images2015.cnblogs.com/blog/842069/201610/842069-20161028161934953-1166770635.png)
那么定义![](http://images2015.cnblogs.com/blog/842069/201610/842069-20161028162143593-487259604.png)

其中

为模mi的逆元。

/** @Date    : 2016-10-23-15.11

* @Author : Lweleth (SoungEarlf@gmail.com)

* @Link : https://github.com/Lweleth

* @Version : $

*/

#include <stdio.h>

#include <iostream>

#include <string.h>

#include <algorithm>

#include <utility>

#include <vector>

#include <map>

#include <set>

#include <string>

#include <stack>

#include <queue>

#define LL long long

#define MMF(x) memset((x),0,sizeof(x))

#define MMI(x) memset((x), INF, sizeof(x))

using namespace std;



const int INF = 0x3f3f3f3f;

const int N = 1e5+2000;



LL r[16];

LL p[16];

LL gcd(LL a, LL b)

{

return b?gcd(b, a % b):a;

}

LL exgcd(LL a, LL b, LL &x, LL &y)

{

LL d = a;

if(!b)

{

x = 1;

y = 0;

}

else

{

d = exgcd(b , a % b, y, x);

y -= (a / b) * x;

}

return d;

}

LL Inv(LL a, LL b)//exgcd求逆元

{

LL g = gcd(a, b);

if(g != 1)

return -1;

LL x, y;

exgcd(a, b, x, y);

return (x % b + b) % b;

}

//x--= (r1*M1*(M1^-1)+r2*M2*(M2^-1)…rn*Mn*(Mn^-1)) mod M;

//M 是所有互素p的乘积 Mi 是 M/p[i]

//M^-1是 模 p[i]的逆元

LL CRT(LL *r, LL *p, int n)

{

LL M = 1;

LL ans = 0;

for(int i = 0; i < n; i++)

{

M *= p[i];

}

for(int i = 0; i < n; i++)

{

LL x, y;

LL Mi = M / p[i];

ans = (ans + r[i] * Mi * Inv(Mi, p[i])) % M;

}

if(ans < 0)

ans += M;

return ans;

}

int main()

{

int T;

int cnt = 0;

cin >> T;

while(T--)

{

int n;

scanf("%d", &n);

for(int i = 0; i < n; i++)

{

scanf("%lld%lld", p + i, r + i);

}

LL ans = CRT(r, p, n);

printf("Case %d: %lld\n", ++cnt, ans);

}

return 0;

}

LightOJ 1319 - Monkey Tradition CRT除数互质版的更多相关文章

  1. LightOJ 1319 Monkey Tradition(中国剩余定理)

    题目链接:https://vjudge.net/contest/28079#problem/U 题目大意:给你n(n<12)行,每行有pi,ri,求一个数ans满足ans%pi=ri(i从1~n ...

  2. 1319 - Monkey Tradition

    1319 - Monkey Tradition   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB ...

  3. X问题(中国剩余定理+不互质版应用)hdu1573

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. codeforces 687B - Remainders Game 数学相关(互质中国剩余定理)

    题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x% ...

  5. POJ 2891- Strange Way to Express Integers CRT 除数非互质

    题意:给你余数和除数求x 注意除数不一定互质 思路:不互质的CRT需要的是将两个余数方程合并,需要用到扩展GCD的性质 合并互质求余方程 m1x -+ m2y = r2 - r1 先用exgcd求出特 ...

  6. hdu X问题 (中国剩余定理不互质)

    http://acm.hdu.edu.cn/showproblem.php?pid=1573 X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory ...

  7. [HDU3240]Counting Binary Trees(不互质同余除法)

    Counting Binary Trees Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  8. C语言:互质

    今天遇到一道奇怪的程序题,和平常的不同.同样都是互质,但是一般的题目都是判断两个数字是否互质,但这道题则是给定一个数字n,要求输出所有小于等于n的与n互质的数,题目已经在下面给出: 质数与互质概念不是 ...

  9. openjudge7834:分成互质组 解析报告

    7834:分成互质组 总时间限制:  1000ms 内存限制:  65536kB 描述 给定n个正整数,将它们分组,使得每组中任意两个数互质.至少要分成多少个组? 输入 第一行是一个正整数n.1 &l ...

随机推荐

  1. 七:HDFS Permissions Guide 权限

    1.权限模式     简单:启动HDFS的操作系统用户即为超级用户,可以通过HADOOP_USER_NAME指定     kerberos: 2.group mapping      组列表由grou ...

  2. [leetcode-779-K-th Symbol in Grammar]

    On the first row, we write a 0. Now in every subsequent row, we look at the previous row and replace ...

  3. UVA 167 R-The Sultan's Successors

    https://vjudge.net/contest/68264#problem/R The Sultan of Nubia has no children, so she has decided t ...

  4. seaj和requirejs模块化的简单案例

    如今,webpack.gulp等构件工具流行,有人说seajs.requirejs等纯前端的模块化工具已经被淘汰了,我不这么认为,毕竟纯前端领域想要实现模块化就官方来讲,还是有一段路要走的.也因此纯前 ...

  5. svn checkout不包括根目录

    在后面加 “.” 即可,如下: svn co svn://127.0.0.1/ylshop/ . 转载请注明博客出处:http://www.cnblogs.com/cjh-notes/

  6. CURL & Fetch

    CURL & Fetch https://kigiri.github.io/fetch/ https://stackoverflow.com/questions/31039629/conver ...

  7. 配置bond和vlan

    网卡是光口还是电口的方法ethtool 网卡名字 一看速度二看port是否是firber首先查看需要做bond的物理网卡,如enp130s0f0,enp131s0f0以物理网卡为enp130s0f0, ...

  8. Flask的第一个应用

    Flask 是一个 Python 实现的 Web 开发微框架,微框架中的“微”意味着 Flask 旨在保持核心简单而易于扩展. 与Django功能上比较: Django:中间件,路由系统,视图(CBV ...

  9. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

  10. git安装和使用 linux系统和window系统

    一.git简介 git是一款免费.开放源代码的分布式版本控制系统特点: git是一个开源的分布式版本控制系统,可以有效, 高速的处理从很小到非常大的项目版本管理 二.git安装 Linux:下载.安装 ...