动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance
引言
二维动态规划中最常见的是棋盘型二维动态规划。
即
func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关
这种情况下,时间复杂度 O(n*n),空间复杂度往往可以优化为O(n)
例题 1
Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
时间复杂度 O(n*n),空间复杂度O(n)的解法。
这里用了个以前不用的技巧,当想把数组初始化为非0的值时,不用memset,而改用vector表示数组。
class Solution {
public:
int minPathSum(vector<vector<int> > &grid) {
if(grid.size() == || grid[].size() == ) return ;
int H = grid.size(), W = grid[].size();
vector<int> path(W+, INT_MAX);
path[] = ;
for(int i = ; i <= H; ++i)
for(int j = ; j <= W; path[j] = min(path[j-], path[j]) + grid[i-][j-], ++j);
return path[W];
}
};
例题 2
Unique Paths II
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
Above is a 3 x 7 grid. How many possible unique paths are there?
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
时间复杂度 O(n*n),空间复杂度O(n)
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
if(obstacleGrid.size() == || obstacleGrid[].size() == ) return ;
int H = obstacleGrid.size(), W = obstacleGrid[].size();
int paths[W+]; memset(paths, , sizeof(paths));
paths[] = (obstacleGrid[][] ? : );
for(int i = ; i <= H; ++i){
for(int j = ; j <= W; ++j){
paths[j] = (obstacleGrid[i-][j-] ? : paths[j-] + paths[j]);
}
}
return paths[W];
}
};
例题 3
很熟悉的 Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
类似的还有http://basicalgos.blogspot.com/上的 53. Edit Distance between strings
这道题目我们要设置两个变量,i和j, E(i, j) 表示word1中以i 结尾的子串到表示word2中以j 结尾的子串的距离。
状态转移方程借助53. Edit Distance between strings上的这张图片来说明:
LeetCode那道题的实现代码,时间复杂度 O(n*n),空间复杂度O(n)
class Solution {
public:
int minDistance(string word1, string word2) {
if(word1.empty() && word2.empty()) return ;
int len1 = word1.length(), len2 = word2.length();
int A[len2+]; int pre;
memset(A, , sizeof(A));
for(int i = ; i <= len1; ++i){
for(int j = ; j <= len2; ++j){
int Min = INT_MAX;
if(i > ) Min = min(A[j]+, Min);
if(j > ) Min = min(A[j-]+, Min);
if(i > && j > ) Min = min(Min, pre+(word1[i-] == word2[j-] ? : ));
if(i == && j == ) Min = ;
pre = A[j];
A[j] = Min;
}
}
return A[len2];
}
};
后记
棋盘型二维动态规划典型的题目还有“寻找最长公共子串(substring)”,“寻找最长公共子序列(subsequence)”。
这些都可以给出时间复杂度 O(n*n),空间复杂度O(n)的解。
动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance的更多相关文章
- LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II
之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...
- 二维动态规划——Interleaving String
97. Interleaving String Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2 ...
- 543A - Writing Code(二维动态规划)
题意:现在要写m行代码,总共有n个文件,现在给出第i个文件每行会出现v[i]个bug,问你在bug少于b的条件下有多少种安排 分析:定义dp[i][j][k],i个文件,用了j行代码,有k个bug 状 ...
- LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...
- poj 2155:Matrix(二维线段树,矩阵取反,好题)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17880 Accepted: 6709 Descripti ...
- [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )
Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...
- Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II)
Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II) 初级题目:Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths) 一个机 ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- [leetcode]304Range Sum Query 2D - Immutable动态规划计算二维数组中子数组的sum
303一维数组的升级版,方法就是用二维数组res存下从(0,0)到当前位置的sum,存的方法是动态规划,看着二维数组画圈比较好搞清楚其中的加减法 算子数组的sum的时候也是和存差不多的逻辑,就是某一部 ...
随机推荐
- 【转】jQuery最佳实践
上周,我整理了<jQuery设计思想>. 那篇文章是一篇入门教程,从设计思想的角度,讲解"怎么使用jQuery".今天的文章则是更进一步,讲解"如何用好jQu ...
- C语言 内存分配 地址 指针 数组 参数 实例解析
. Android源码看的鸭梨大啊, 补一下C语言基础 ... . 作者 : 万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/detai ...
- <Android>对话框的使用
Android系统提供四种对话框:警告对话框(AlertDialog),进度对话框(ProgressDialog),日期选择对话框(DatePickerDialog)和时间选择对话框(TimePick ...
- js控制input只能输入数字和小数点后两位,输入其他自动清除方法。
工作中input='text'总会遇到要控制输入数字,或者是输入中文,输入电话,输入身份证号,邮箱等.今天我遇到的是要输入数字并且只能小数点后面两位的数字,还不能为负数.废话不多说上代码: <i ...
- YaoLingJump开发者日志(四)
这么有意思的游戏没有剧情怎么行?开始剧情的搭建. 用到了LGame中的AVGScreen,确实是个好东西呢,只需要准备图片和对话脚本就行了. 经过不断的ps,yy,ps,yy,游戏开头的剧 ...
- 【week3】psp (技术随笔)
本周psp: 随笔字数: 总计 累计代码行 (前两项为单元测试部分) 词频统计:87 四则运算:49 四人小组:39 175 随笔字数 (不包含代码字数) 词频统计:237 四则运算:125 四人小组 ...
- 【week3】词频统计 单元测试
使用Eclipse 集成的Junit进行单元测试.单元测试的核心包括断言.注解. 测试代码如下: @BeforeClass // 针对所有测试,只执行一次,且必须为static void public ...
- HDU 2163 Palindromes
http://acm.hdu.edu.cn/showproblem.php?pid=2163 Problem Description Write a program to determine whet ...
- 【log4net】- 非常完善的Log4net详细说明
1.概述 log4net是.Net下一个非常优秀的开源日志记录组件.log4net记录日志的功能非常强大.它可以将日志分不同的等级,以不同的格式,输出到不同的媒介.本文主要是介绍如何在Visual S ...
- 2018 杭电多校1 - Distinct Values
题目链接 Problem Description Chiaki has an array of n positive integers. You are told some facts about t ...