本文算法使用python3实现


1. 问题1

1.1 题目描述:

  一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

  时间限制:1s;空间限制:32768K


1.2 思路描述:

  (1)当 $ n=0 $ 时,返回0

  (2)当 $ n=1 $ 时,只有一种跳法:跳1级台阶。

  (3)当 $ n=2 $ 时,有两种跳法:(a) 跳1级再跳1级;(b) 直接跳2级。

  (4)当 $ n=3 $ 时,我们只考虑最后一步的情况:(a)当最后一步只跳1级时, $ f(3)=f(3-1) $ ;(b)当最后一步直接跳2级时, $ f(3)=f(3-2) $ 。因此 $ f(3)=f(3-1) + f(3-2) $

  (5)以此类推,当 $ n=N $ 时,只需考虑最后一步的情况即可:(a)当最后一步只跳1级时, $ f(N)=f(N-1) $ ;(b)当最后一步直接跳2级时, $ f(N)=f(N-2) $ 。因此 $ f(N)=f(N-1) + f(N-2) $


1.3 程序代码:

class Solution:
# def jumpFloor(self, number):
# '''递归:提交代码超时了'''
# if number in [0, 1, 2]:
# return number
# return self.jumpFloor(number-1)+self.jumpFloor(number-2) def jumpFloor(self, number):
'''迭代'''
floor = []
for i in range(number+1):
if i in [0,1,2]:
floor.append(i)
continue
floor.append(floor[i-1]+floor[i-2])
return floor[-1]

2. 问题2

2.1 题目描述:

  一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法

  时间限制:1s;空间限制:32768K


2.2 思路描述:

  (1)当 $ n=0 $ 时,返回0

  (2)当 $ n=1 $ 时,只有一种跳法:跳1级台阶。

  (3)当 $ n=2 $ 时,有两种跳法:(a) 跳1级再跳1级;(b) 直接跳2级。

  (4)当 $ n=3 $ 时,我们只考虑最后一步的情况:(a)当最后一步只跳1级时, $ f(3)=f(3-1) $ ;(b)当最后一步直接跳2级时, $ f(3)=f(3-2) $ ;(c) 当最后一步直接跳3级时, $ f(3) = 1 $ 。因此 $ f(3)=f(3-1) + f(3-2) +1 $

  (5)以此类推,当 $ n=N $ 时,只需考虑最后一步的情况即可:(a)当最后一步只跳1级时, $ f(N)=f(N-1) $ ;(b)当最后一步直接跳2级时, $ f(N)=f(N-2) $ ;(c) 当最后一步直接跳3级时, $ f(N) = f(N-3) $;...;(n)当最后一步直接跳N级时, $ f(N) = 1 $ 。因此 $ f(N) = f(N-1)+f(N-2)+f(N-3)+...+f(1)+1 $


2.3 程序代码:

class Solution:
def jumpFloorII(self, number):
'''迭代法,保存n次结果'''
floor = []
for i in range(number+1):
if i in [0,1,2]:
floor.append(i)
continue
step = 0
for k in range(i):
step += floor[k]
floor.append(step+1)
return floor[-1] # def jumpFloorII(self, number):
# '''递归法:当number很大时,递归很深,会超时'''
# if number in [0,1,2]:
# return number
# res = 0
# for k in range(number):
# res += self.jumpFloorII(k)
# return res+1

3. 问题3

3.1 题目描述:

  我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

  时间限制:1s;空间限制:32768K


3.2 思路描述:

  (1)当 $ n=0 $ 时,返回0

  (2)当 $ n=1 $ 时,只有一种覆盖方法,即竖着覆盖。

    

  (3)当 $ n=2 $ 时,有两种覆盖方法:使用两个 $ 2\times1 $ 的小矩形,横着覆盖与竖着覆盖。

    

  (4)当 $ n=3 $ 时,我们只考虑最后一步的情况:(a)当最后一步只需覆盖一个 $ 2\times1 $ 的矩形时时, $ f(3)=f(3-1) $ ;(b)当最后一步需覆盖一个 $ 2\times2 $ 的矩形时, $ f(3)=f(3-2) $

  (5)以此类推,当 $ n=N $ 时,只需考虑最后一步的情况即可:(a)当最后一步只需覆盖一个 $ 2\times1 $ 的矩形时, $ f(N)=f(N-1) $ ;(b)当最后一步需覆盖一个 $ 2\times2 $ 的矩形时, $ f(N)=f(N-2) $ ;


3.3 程序代码:

class Solution:
def rectCover(self, number):
# 使用迭代法进行
if number == 0:
return 0
methods = []
for i in range(1,number+1):
if i in [1,2]:
methods.append(i)
else:
methods.append(methods[-1]+methods[-2])
return methods[-1]

《剑指offer》---跳台阶问题的更多相关文章

  1. (原)剑指offer跳台阶和矩形覆盖

    跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   分析同样为斐波那契数列边形这样的题肯定有公式 设 ...

  2. 剑指Offer 跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   解题思路: f(n)=f(n-1)+f(n-2); f(1)=1,f(2)=2;   AC代码 ...

  3. 剑指Offer——跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路分析 这个问题可以先从简单开始考虑,台阶只有1阶,只有1种跳法,台阶有2阶,有2种跳法:一种两 ...

  4. 用js刷剑指offer(跳台阶)

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 牛客网链接 思路 这一题和斐波那契数列思路完全一样. 假如青蛙从第n个 ...

  5. 剑指offer--39. 跳台阶

    时间限制:1秒 空间限制:32768K 热度指数:375795 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). cla ...

  6. 剑指Offer-8.跳台阶(C++/Java)

    题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 分析: 实际上就是斐波那契数列的一个应用,青蛙跳上n级台阶的跳法数等于跳 ...

  7. C#版 - 剑指offer 面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖) 题解

    面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tp ...

  8. 《剑指offer》 跳台阶

    本题来自<剑指offer> 跳台阶 题目1: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: 同上一篇. C ...

  9. 【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题

     本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项 ...

  10. 【剑指offer】09-2跳台阶,C++实现

    原创博文,转载请注明出处! # 本文是牛客网<剑指offer>刷题笔记 1.题目 # 一只青蛙一次可以跳1级台阶,也可以跳2级.求该青蛙跳n级的台阶总共有多少种跳法. 2.思路 # 跳0级 ...

随机推荐

  1. 引入类型struct(结构),提高代码的逻辑性和可读性

    创建一个新类型(struct, 即 结构)SComplex 来表示复数,提高了代码的逻辑性和可读性,代码更加的简洁. #include "stdafx.h" #include &q ...

  2. 搭建Jupyter Notebook服务器

    昨天发了Jupyter的使用,补一篇Jupyter服务器的搭建~ 一.搭建Jupyter 1.安装 使用virtualenv建虚拟环境.在虚拟环境中安装jupyter.matplotlib等等需要的库 ...

  3. PAT A1127 ZigZagging on a Tree (30 分)

    Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can ...

  4. Excelファイルを扱う方法

    概要 データをローカルに落としたいという要件がある場合.ユーザーはExcelを希望するケースが多いだろう.そんな時は以下の汎用モジュールを使用して簡単に作る事ができます.使用方法は.GUI_UPLOA ...

  5. 北京Uber优步司机奖励政策(12月27日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  6. 机器学习实战:决策树的存储读写文件报错(Python3)

    错误原因:pickle模块存储的是二进制字节码,需要以二进制的方式进行读写 1. 报错一:TypeError: write() argument must be str, not bytes 将决策树 ...

  7. join_tab计算代价

    此路不通,还是需要按照顺序进行计算

  8. 如何设置虚拟化的centos内、外网络通畅

    首先要去确定你的本机(本地物理机)是通过以太网(插网线)上网的,还是通过wifi上网的.这个很重要. 如果是通过以太网去上网,那么虚拟化出来的系统,网络配置应当选择桥接模式. 当然了,也不一定非要用桥 ...

  9. Unity Lighting - Choosing a Lighting Technique 选择照明技术(一)

      Choosing a Lighting Technique 选择照明技术 https://unity3d.com/cn/learn/tutorials/topics/graphics/choosi ...

  10. java后台接受web前台传递的数组参数

    前台发送:&warning_type[]=1,2 &warning_type=1,2 后台接收:(@RequestParam(value = "param[]") ...