pandas

Pandas是基于Numpy开发出的,专门用于数据分析的开源Python库

Pandas的两大核心数据结构

  • Series(一维数据)
 
Series
 
创建Series的方法
 
允许索引重复
  • DataFrame(多特征数据,既有行索引,又有列索引)
 
DataFrame
 
索引方法
# 创建一个3行4列的DataFrame类型数据
data_3_4 = pd.DataFrame(np.arange(10, 22).reshape(3, 4))
# 打印数据
print(data_3_4) # 打印第一行数据
print(data_3_4[:1])
# 打印第一列数据
print(data_3_4[:][0])
  • DataFrame的属性
 
原始数据
 
DataFrame的属性
# 读取数据
result = pd.read_csv("./students_score.csv")
# 数据的形状
result.shape
# 每列数据的 类型信息
result.dtypes
# 数据的维数
result.ndim
# 数据的索引(起/始/步长)
result.index
# 打印每一列 属性的名称
result.columns
# 将数据放到数组中显示
result.values
 
整体查询
# 打印前5个
print("-->前5个:")
print(result.head(5))
# 打印后5个
print("-->后5个:")
print(result.tail(5))
# 打印描述信息(实验中好用)
print("-->描述信息:")
print(result.describe())

Panda数据读取(以csv为例)

pandas.read_csv(filepath_or_buffer, sep=",", names=None, usecols = None)

filepath_or_buffer : 文件路径(本地路径或url路径)
sep: 分隔符
names: 列索引的名字
usecols: 指定读取的列名 返回的类型: DataFrame
 
读取并返回数据
  • Dataframe通过布尔索引过滤数据
 
布尔索引
# 布尔索引(查询) 找出年龄大于23岁的人
result[result["age"]>23]

小案例: 分析2006年至2016年1000部IMDB电影数据

 
2006年----2016年IMDB最受欢迎的1000部电影
 
评分降序排列
 
统计时长
IMDB_1000 = pd.read_csv("./IMDB-Movie-Data.csv")
# 获取数据字段
print(IMDB_1000.dtypes)
# 根据1000部电影评分进行降序排列,参数ascending, 默认为True(升序), 这里为False(降序)
IMDB_1000.sort_values(by="Rating", ascending=False)
# 时间最长的电影
IMDB_1000[IMDB_1000["Runtime (Minutes)"]==IMDB_1000["Runtime (Minutes)"].max()]
# 时间最短的电影
IMDB_1000[IMDB_1000["Runtime (Minutes)"]==IMDB_1000["Runtime (Minutes)"].min()]
# 电影时长平均值
IMDB_1000["Runtime (Minutes)"].mean()

数据处理

  • 存在缺失值, 直接删除数据(删除存在缺失值的样本)
 
删除存在缺失值的样本
# 删除存在缺失值的样本
IMDB_1000.dropna()

不推荐的操作: 按列删除缺失值为IMDB_1000.dropna(axis=1)

  • 存在缺失值, 直接填充数据fillna
 
填充空缺值
 
使用平均值填充数据
# 为一些电影缺失的总票房添加平均值
IMDB_1000["Revenue (Millions)"].fillna(IMDB_1000["Revenue (Millions)"].mean(), inplace=True)

小案例: 乳腺癌数据预处理 (在线获取数据,并替换缺失符号为标准缺失符号np.nan)

 
替换默认的缺失符号
 
各列命名
 
读取原始数据
# 在线读取数据,并按照说明文档, 并对各列信息进行命名
bcw = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data", names=["Sample code number","Clump Thickness","Uniformity of Cell Size","Uniformity of Cell Shape", "Marginal Adhesion","Single Epithelial Cell Size","Bare Nuclei","Bland Chromatin","Normal Nucleoli","Mitoses","Class:"])
 
预处理,把?替换为np.nan

小案例: 日期格式转换 数据来源

 
facebook
 
日期格式转换
# 读取前10行数据
train = pd.read_csv("./train.csv", nrows = 10)
# 将数据中的time转换为最小分度值为秒(s)的计量单位
train["time"] = pd.to_datetime(train["time"], unit="s")
  • 从日期中拆分出新的列
 
新增列
# 新增列year, month, weekday
train["year"] = pd.DatetimeIndex(train["time"]).year
train["month"] = pd.DatetimeIndex(train["time"]).month
train["weekday"] = pd.DatetimeIndex(train["time"]).weekday

数据表的合并(merge)

 
数据
user_info.csv
user_id,姓名,age
1,徐三,23
2,徐四,22
3,宝儿,210
4,楚岚,21
5,王也,24
6,诸葛青,21
7,天师,89
8,吕梁,24
9,夏禾,26
goods_info.csv
goods_id,goods_name
G10,三只松鼠
G12,MacBook
G13,iPad
G14,iPhone
order_info.csv
order_id,use_id,goods_name
as789,1,三只松鼠
sd567,2,MacBook
hj456,4,iPad
 
合并过程
# 读取3张表
user_info = pd.read_csv("./user_info.csv")
order_info = pd.read_csv("./order_info.csv")
goods_info = pd.read_csv("./goods_info.csv")
# 合并三张表
u_o = pd.merge(user_info, order_info, how="left", on=["user_id", "user_id"])
u_o_g = pd.merge(u_o, goods_info, how="left", on=["goods_name", "goods_name"])
  • 建立交叉表(用于计算分组的频率)
 
交叉表
# 交叉表, 表示出用户姓名,和商品名之间的关系
user_goods = pd.crosstab(u_o_g["姓名"],u_o_g["goods_name"])

Pandas的分组和聚合(重要)

小案例: 星巴克全球分布情况 数据来源

 
全球星巴克分布情况
 
读取全球星巴克的位置数据
 
每个国家星巴克的数量
 
每个国家每个省份星巴克的数量
starbucks = pd.read_csv("./directory.csv")
# 统计每个国家星巴克的数量
starbucks.groupby(["Country"]).count()
# 统计每个国家 每个省份 星巴克的数量
starbucks.groupby(["Country", "State/Province"]).count()
  • 全球各国星巴克数量排名
 
全球星巴克数量排名

作者:木子昭
链接:https://www.jianshu.com/p/7414364992e4
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

机器学习三剑客之Pandas的更多相关文章

  1. 机器学习 三剑客 之 pandas + numpy

    机器学习 什么是机器学习? 机器学习是从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测 机器学习存在的目的和价值领域? 领域: 医疗.航空.教育.物流.电商 等... 目的: 让机器学习 ...

  2. 机器学习三剑客之Pandas中DataFrame基本操作

    Pandas 是基于Numpy 的一种工具,是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.Pandas提供了大量能使我们快速便捷 ...

  3. Python:机器学习三剑客之 NumPy

    一.numpy简介 Numpy是高性能科学计算和数据分析的基础包,机器学习三剑客之一.Numpy库中最核心的部分是ndarray 对象,它封装了同构数据类型的n维数组.部分功能如下: ndarray, ...

  4. 数据分析三剑客之pandas

    Pandas 引入 前面一篇文章我们介绍了numpy,但numpy的特长并不是在于数据处理,而是在它能非常方便地实现科学计算,所以我们日常对数据进行处理时用的numpy情况并不是很多,我们需要处理的数 ...

  5. python 机器学习三剑客 之 Matplotlib

    Matplotlib介绍: Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形 . 通过 Matplotlib,开发者可以仅需要几 ...

  6. 【机器学习_8】pandas

    背景 关于同一个话题,不同作者也有不同行文结构.但要真正理解并会用,在我的经验里,是必须要自己重新组织的. 本文是基于以往看过的资料,从自身数据处理应用的角度出发,重新组织pandas应用结构,希望能 ...

  7. 机器学习三剑客之Numpy库基本操作

    NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机 ...

  8. Numpy 机器学习三剑客之Numpy

    NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机 ...

  9. 机器学习三剑客之Numpy

      Numpy NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了Python的PIL(全局解释器锁),运算效 ...

随机推荐

  1. Office word中去掉首页的页眉

    1.首先将光标位置移动到第二页的开始,然后点击页面布局命令. 2.页面布局里面找到分隔符,找到下一页的分隔符.(分页符分页) 3.双击第二页的页眉,打开页眉编辑菜单.将连接到前一条页眉的命令去掉. 4 ...

  2. <td></td>之间的&nbsp;

    今天开发中遇到了一个很丢脸的事:我把下图中别人写的 给去掉了,我觉得这个很多余,结果被在大神们痛斥了一顿.因为去掉这个 会导致td之间没有数据时td的边框不显示的问题,所以几下这个惨痛的教训,以自警. ...

  3. The 12 Months of the Year

  4. canvas基本使用

    1.什么是CANVAS canvas是html5新增的画布元素,可以通过javascript来在画布上绘制图形,图标以及任何视觉性的图像. 2.canvas的用途 替代flash,做各种动态效果,做小 ...

  5. 关于websocket

    一句话总结: websocket可以说是基于HTTP但有有所进化的一个介于应用层和传输层的接口抽象,不是协议. 1 需要基于HTTP进行3次握手,4次挥手(在握手期间建立websocket连接,不再通 ...

  6. django--mysql设置

    mysql基本配置 'default': { 'ENGINE': 'django.db.backends.mysql', 'HOST': '127.0.0.1', 'PORT': 3306, 'USE ...

  7. Python高级教程-生成器

    生成器(Generator) 通过列表生成式,可以直接创建一个列表.但是,受内存限制,列表的容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几 ...

  8. Python高级教程-切片

    Python中的切片 取一个list或tuple的部分元素是非常常见的操作.比如,一个list如下: >>> L = ['A','B','C','D'] 对经常取指定索引范围的操作, ...

  9. ansible判定文件或者文件夹是否存在

    ansible 的常用模块中没有判定当文件存在或者不存在时,执行某个执行 使用下面方法能简单判定某个文件是否存在 --- - name: judge a file or dir is exits sh ...

  10. Oracle DG备库强制switch_over过程

    故障描述: 主库异常下线,需要将备库强制启动为主库,切断日志时提示需要介质恢复,执行介质恢复后,再激活日志即可进行切换 1.  执行alter database recover managed sta ...