这题有两种解法,1是根据欧拉函数性质:素数的欧拉函数值=素数-1(可根据欧拉定义看出)欧拉函数定义:小于x且与x互质的数的个数

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cassert>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1.0)
#define ll long long
#define mod 1000000007
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f; ll Euler[N];
void euler()
{
Euler[]=;
for(ll i=;i<N;i++)Euler[i]=i;
for(ll i=;i<N;i++)
if(Euler[i]==i)
for(ll j=i;j<N;j+=i)
Euler[j]-=Euler[j]/i;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie();
ll t,n,cnt=;
euler();
cin>>t;
while(t--){
cin>>n;
ll ans=;
for(ll i=;i<n;i++)
{
ll a;
cin>>a;
for(ll j=a+;j<N;j++)
if(Euler[j]==j-)
{
ans+=j;
break;
}
}
cout<<"Case "<<++cnt<<": "<<ans<<" Xukha"<<endl;
}
return ;
}
/*********************
3
5
1 2 3 4 5
6
10 11 12 13 14 15
2
1 1
*********************/

euler

2是直接用素数筛

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cassert>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1.0)
#define ll long long
#define mod 1000000007
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f; bool prime[N];
void getprime()
{
memset(prime,,sizeof prime);
prime[]=;
for(int i=;i<N;i++)
{
if(!prime[i])
{
for(int j=*i;j<N;j+=i)
prime[j]=;
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie();
ll t,n,cnt=;
getprime();
cin>>t;
while(t--){
cin>>n;
ll ans=;
for(ll i=;i<n;i++)
{
ll a;
cin>>a;
for(ll j=a+;j<N;j++)
if(!prime[j])
{
ans+=j;
break;
}
}
cout<<"Case "<<++cnt<<": "<<ans<<" Xukha"<<endl;
}
return ;
}
/*********************
3
5
1 2 3 4 5
6
10 11 12 13 14 15
2
1 1
*********************/

prime

后者仅花了56ms,前者120ms

lightoj1370欧拉函数/素数筛的更多相关文章

  1. 【bzoj2401】陶陶的难题I “高精度”+欧拉函数+线性筛

    题目描述 求 输入 第一行包含一个正整数T,表示有T组测试数据.接下来T<=10^5行,每行给出一个正整数N,N<=10^6. 输出 包含T行,依次给出对应的答案. 样例输入 7 1 10 ...

  2. POJ 3126 Prime Path (bfs+欧拉线性素数筛)

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

  3. Poj 2478-Farey Sequence 欧拉函数,素数,线性筛

    Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14291   Accepted: 5647 D ...

  4. Bi-shoe and Phi-shoe(欧拉函数/素筛)题解

    Bi-shoe and Phi-shoe Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe ...

  5. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  6. lightOJ1370 欧拉函数性质

    D - (例题)欧拉函数性质 Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:32768KB     ...

  7. 【bzoj2190】【仪仗队】欧拉函数+线性筛(浅尝ACM-J)

    向大(hei)佬(e)势力学(di)习(tou) Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪 ...

  8. Bi-shoe and Phi-shoe 欧拉函数 素数

    Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular co ...

  9. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

随机推荐

  1. Java基础教程:Lambda表达式

    Java基础教程:Lambda表达式 本文部分内容引用自OneAPM:http://blog.oneapm.com/apm-tech/226.html 引入Lambda Java 是一流的面向对象语言 ...

  2. oracle procedure简单的将临时表的数据插入或更新到目标表

    CREATE OR REPLACE PROCEDURE DEAL_SYNC_SCH_CUSTPHONE_NEW AS CURSOR C_CURU IS SELECT * FROM CBS_COS.SC ...

  3. window下rails4.1 发生TZInfo::DataSourceNotFound 错误

    在官网上学习rails 4.1 ,启动rails server之后发生了如下错误 $ rails serverBooting WEBrickRails 4.1.0 application starti ...

  4. 【持续更新】ultraedit工具使用总结

    常用设置及快捷键 设置Ultraedit自动换行: 永久修改: 点击菜单栏的“高级→配置”,找到“编辑器→自动换行/制表符设置”,选择“默认为每个文件启用自动换行”,ok. 临时修改: 快捷键 Ctr ...

  5. netty2---服务端和客户端

    客户端: package com.client; import java.net.InetSocketAddress; import java.util.Scanner; import java.ut ...

  6. 手机调取摄像头问题(getUserMedia)

    先说坏消息,苹果机没法玩这个!!! 而且,必须拥有 https 的安全协议!!! 而安卓机想完成这个功能倒是很 easy 的,看一眼代码 主要传入三个参数,配置对象,成功,失败 var mediaOp ...

  7. MySQL Binlog解析(2)

    一.TABLE_MAP_EVENT Used for row-based binary logging beginning with MySQL 5.1.5.The TABLE_MAP_EVENT d ...

  8. oracle 11 g数据库卸载(方法二)

    1.开始->设置->控制面板->管理工具->服务 停止所有 Oracle服务. 2.开始->程序->Oracle - OraHome81->Oracle In ...

  9. 将从数据库中获取的数据写入到Excel表中

    pom.xml文件写入代码,maven自动加载poi-3.1-beta2.jar <!-- https://mvnrepository.com/artifact/poi/poi --> & ...

  10. 用树状数组求逆序对数(poj2299)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 46995   Accepted: 17168 ...