传送门:

http://acm.hdu.edu.cn/showproblem.php?pid=1014

Uniform Generator

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 33120    Accepted Submission(s): 13137

Problem Description
Computer simulations often require random numbers. One way to generate pseudo-random numbers is via a function of the form

seed(x+1) = [seed(x) + STEP] % MOD

where '%' is the modulus operator.

Such a function will generate pseudo-random numbers (seed) between 0 and MOD-1. One problem with functions of this form is that they will always generate the same pattern over and over. In order to minimize this effect, selecting the STEP and MOD values carefully can result in a uniform distribution of all values between (and including) 0 and MOD-1.

For example, if STEP = 3 and MOD = 5, the function will generate the series of pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this example, all of the numbers between and including 0 and MOD-1 will be generated every MOD iterations of the function. Note that by the nature of the function to generate the same seed(x+1) every time seed(x) occurs means that if a function will generate all the numbers between 0 and MOD-1, it will generate pseudo-random numbers uniformly with every MOD iterations.

If STEP = 15 and MOD = 20, the function generates the series 0, 15, 10, 5 (or any other repeating series if the initial seed is other than 0). This is a poor selection of STEP and MOD because no initial seed will generate all of the numbers from 0 and MOD-1.

Your program will determine if choices of STEP and MOD will generate a uniform distribution of pseudo-random numbers.

 
Input
Each line of input will contain a pair of integers for STEP and MOD in that order (1 <= STEP, MOD <= 100000).
 
Output
For each line of input, your program should print the STEP value right- justified in columns 1 through 10, the MOD value right-justified in columns 11 through 20 and either "Good Choice" or "Bad Choice" left-justified starting in column 25. The "Good Choice" message should be printed when the selection of STEP and MOD will generate all the numbers between and including 0 and MOD-1 when MOD numbers are generated. Otherwise, your program should print the message "Bad Choice". After each output test set, your program should print exactly one blank line.
 
Sample Input
3 5
15 20
63923 99999
 
Sample Output
3 5 Good Choice

15 20 Bad Choice
63923 99999 Good Choice
 
Source
 
题目意思:
就是给定两个数step, mod然后利用给定的公式求随机数,保证从0到mod减1范围内都均匀出现。
每一个数都出现一次。这样就均等分布了。就打印Good否则就Bad 
 
分析:
有两种做法:
1.直接模拟
枚举产生随机数,然后排序比对
全部匹配就是好的,有一个不是就是坏的
code:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,m,i;
int s[];
while(cin>>n>>m)
{
s[]=;
for(i=;i<m;i++)
s[i]=(s[i-]+n)%m;
sort(s,s+m);
for(i=;i<m;i++)
if(s[i]!=i)
break;
printf("%10d%10d",n,m);
if(i==m)
cout<<" Good Choice"<<endl<<endl;
else
cout<<" Bad Choice"<<endl<<endl;
}
return ;
}

2.公式法

这是网上比较神奇的做法(判断一下两个数是不是互质)

就是比较step和mod的最大公约数是不是1

大佬题解:

本题就是求step和mod如果GCD(最大公约数位1)那么就是Good Choice,否则为Bad Choice

为什么这个结论成立呢?

因为当GCD(step, mod) == 1的时候,那么第一次得到序列:x0, x0 + step, x0 + step…… 那么mod之后,必然下一次重复出现比x0大的数必然是x0+1,为什么呢?

因为(x0 + n*step) % mod; 且不需要考虑x0 % mod的值为多少,因为我们想知道第一次比x0大的数是多少,那么就看n*step%mod会是多少了,因为GCD(step, mod) == 1,那么n*step%mod必然是等于1,故此第一次重复出现比x0大的数必然是x0+1,那么第二次出现比x0大的数必然是x0+2,以此类推,就可得到必然会出现所有0到mod-1的数,然后才会重复出现x0.

当GCD(step, mod) != 1的时候,可以推出肯定跨过某些数了,这里不推了。

然后可以扩展这个结论,比如如果使用函数 x(n) = (x(n-1) * a + b)%mod;增加了乘法因子a,和步长b了;

那么如果是Good Choice,就必然需要GCD(a, mod) == 1,而且GCD(b, mod) == 1;

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int gcd(int a,int b)//最大公约数
{
if (b==)
return a;
return gcd(b, a%b);
}
int main()
{
int n,m;
while(~scanf("%d %d",&n,&m))
{
if(gcd(n,m)==)
printf("%10d%10d Good Choice\n\n",n,m);
else
printf("%10d%10d Bad Choice\n\n",n,m);
}
return ;
}
 

HDU 1014 Uniform Generator(模拟和公式)的更多相关文章

  1. HDU 1014 Uniform Generator【GCD,水】

    Uniform Generator Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. HDU 1014:Uniform Generator

    Uniform Generator Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. HDU 1014 Uniform Generator(题解)

    Uniform Generator Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. hdu 1014.Uniform Generator 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 题目意思:给出 STEP 和 MOD,然后根据这个公式:seed(x+1) = [seed(x) ...

  5. HDU 1014 Uniform Generator 欧几里得

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 解题思路: 1. 把题目意思读懂后,明白会输入两个数,然后根据题中的公式产生一系列伪随机数,看这 ...

  6. HDU 1014 Uniform Generator(最大公约数,周期循环)

    #include<iostream> #include <cstdio> #include <cstring> using namespace std; int m ...

  7. HDU 1014 Uniform Generator 题解

    找到规律之后本题就是水题了.只是找规律也不太easy的.证明这个规律成立更加不easy. 本题就是求step和mod假设GCD(最大公约数位1)那么就是Good Choice,否则为Bad Choic ...

  8. hdu 1014 Uniform Generator 数论

    摘取于http://blog.csdn.net/kenden23/article/details/37519883: 找到规律之后本题就是水题了,不过找规律也不太容易的,证明这个规律成立更加不容易. ...

  9. 1014 Uniform Generator ACM

    http://acm.hdu.edu.cn/showproblem.php?pid=1014 题目的英文实在是太多了 ,搞不懂. 最后才知道是用公式seed(x+1) = [seed(x) + STE ...

随机推荐

  1. java web 之Session

    1.Session简单介绍 由于Http是无状态的协议,所以服务端需要记录用户的状态时,就需要某种机制来识别具体的用户,实现这个机制的方式就是session. 典型的场景比如购物车,当你点击下单按钮时 ...

  2. Toolbar和Drawerlayout的基本使用

    参考文章: http://www.jcodecraeer.com/a/anzhuokaifa/androidkaifa/2014/1118/2006.html http://www.codeceo.c ...

  3. 工作中常用的sql语句以及知识整理

    一.常用的sql语句 1.建表语句 create table tabname(colname1 type1 [not null][primary key], colname2 type2,...) 根 ...

  4. Springboot基础知识

    1.@RestController注解 Spring4之后新加入的注解,@RestController是@ResponseBody和@Controller的组合注解.(返回json需要@Respons ...

  5. 任务九:使用HTML/CSS实现一个复杂页面

    任务目的 通过实现一个较为复杂的页面,加深对于HTML,CSS的实战能力 实践代码的复用.优化 任务描述 通过HTML及CSS实现设计稿 设计稿PSD文件(点击下载),效果如 效果图(点击打开) 整个 ...

  6. C# GDI+ 利用 Rectangle GraphicsPath 判断 矩形或多边形 图形关系

    最近在做一些简单的图像对比工作,总结了一些GDI+对象的使用方式,记录下来共享给大家使用. 判断Rectangl与多边形的关系 /// <summary> /// 是否包含输入范围 /// ...

  7. toasf的苦水

    http://blog.csdn.net/qq_25867141/article/details/52807705 优化 上面的几种方式我大致也都走了一遍,其实我觉得都没啥区别,看你喜欢用哪种吧.我其 ...

  8. freess(未测试)

    freess 使用 nodejs 配合 shadowsocks-windows 实现FQ (windows) 使用方法: 如果你没有安装nodejs请先安装,访问 https://nodejs.org ...

  9. lua的面向对象实现

    百度搜索一下,给出出的解决方案和学习帖子很多,可是我还是有很多的问题! (1)什么是面向对象? (2)lua中怎么实现面向对象? (3)什么样的实现既简单又能完成我的功能? (4)一定要按照c++的方 ...

  10. QA-IDEA中用maven配置项目无法加载JDBC

    java.lang.ClassNotFoundException: com.mysql.jdbc.Driver Im building Maven Java Web application and w ...