Codeforces Round #119 (Div. 2) Cut Ribbon(DP)
1 second
256 megabytes
standard input
standard output
Polycarpus has a ribbon, its length is n. He wants to cut the ribbon in a way that fulfils the following two conditions:
- After the cutting each ribbon piece should have length a, b or c.
- After the cutting the number of ribbon pieces should be maximum.
Help Polycarpus and find the number of ribbon pieces after the required cutting.
The first line contains four space-separated integers n, a, b and c (1 ≤ n, a, b, c ≤ 4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers a, b and c can coincide.
Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.
5 5 3 2
2
7 5 5 2
2
In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3.
In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.
【题意】给你一根绳子称为d,现在要将绳子分成若干段,使得每一段的长度必须是a,b,c中的一个,求分得的最多段数。
【分析】简单DP,dp[i]代表切到当前位置获得的最大段数,慢慢更新即可。
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define vi vector<int>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long LL;
const int N = 1e5+;
int n;
int a,b,c;
int dp[N];
void solve(int i,int x){
if(i-x==)dp[i]=max(dp[i],);
else if(i-x<)dp[i]=max(dp[i],);
else dp[i]=max(dp[i],dp[i-x]==?:dp[i-x]+);
}
int main(){
scanf("%d%d%d%d",&n,&a,&b,&c);
for(int i=;i<=n;i++){
solve(i,a);
solve(i,b);
solve(i,c);
}
printf("%d\n",dp[n]);
return ;
}
Codeforces Round #119 (Div. 2) Cut Ribbon(DP)的更多相关文章
- Codeforces Round #260 (Div. 2)C. Boredom(dp)
C. Boredom time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #658 (Div. 2) D. Unmerge(dp)
题目链接:https://codeforces.com/contest/1382/problem/D 题意 给出一个大小为 $2n$ 的排列,判断能否找到两个长为 $n$ 的子序列,使得二者归并排序后 ...
- Codeforces Round #471 (Div. 2) F. Heaps(dp)
题意 给定一棵以 \(1\) 号点为根的树.若满足以下条件,则认为节点 \(p\) 处有一个 \(k\) 叉高度为 \(m\) 的堆: 若 \(m = 1\) ,则 \(p\) 本身就是一个 \(k\ ...
- 【Codeforces】Codeforces Round #374 (Div. 2) -- C. Journey (DP)
C. Journey time limit per test3 seconds memory limit per test256 megabytes inputstandard input outpu ...
- Codeforces Round #652 (Div. 2) D. TediousLee(dp)
题目链接:https://codeforces.com/contest/1369/problem/D 题意 最初有一个结点,衍生规则如下: 如果结点 $u$ 没有子结点,添加 $1$ 个子结点 如果结 ...
- Codeforces Round #247 (Div. 2) C. k-Tree (dp)
题目链接 自己的dp, 不是很好,这道dp题是 完全自己做出来的,完全没看题解,还是有点进步,虽然这个dp题比较简单. 题意:一个k叉树, 每一个对应权值1-k, 问最后相加权值为n, 且最大值至少为 ...
- Codeforces Round #165 (Div. 1) Greenhouse Effect(DP)
Greenhouse Effect time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces Round #368 (Div. 2) B. Bakery (模拟)
Bakery 题目链接: http://codeforces.com/contest/707/problem/B Description Masha wants to open her own bak ...
- Codeforces Round #262 (Div. 2) 460C. Present(二分)
题目链接:http://codeforces.com/problemset/problem/460/C C. Present time limit per test 2 seconds memory ...
随机推荐
- LightOJ 1058 - Parallelogram Counting 几何思维
http://www.lightoj.com/volume_showproblem.php?problem=1058 题意:给你顶点,问能够成多少个平行四边形. 思路:开始想使用长度来扫描有多少根,但 ...
- 解决配置JAVA_HOME JDK版本不变的问题
解决方案:修改环境变量Path 因为PATH环境变量中默认将system32等系统重要目录添加在最前面,所以运行java -version时当然是调用system32目录下的java.exe了. 所以 ...
- java修饰符——transient
一.背景 上星期去CRM上开发一个功能,该系统里面有自动分页,需要在实体类里加入一个分页变量 // 分页 private PageInfo pageInfo = new PageInfo(); 这个本 ...
- How to write educational schema.
Sometimes, writing such educational schemas could be of much use, and creating such docs can be bene ...
- POJ 2456 Aggressive cows ( 二分搜索)
题目链接 Description Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The ...
- jsp之jstl核心标签库
JSTL核心标签库技术 1. JSTL介绍 在JSP页面中即可书写html,也可以书写Java代码,导致页面混乱,维护,修改,升级难度加大,于是国际上不同的公司在实际应用中,根据页面的需求将Java代 ...
- ButterKnife用法详解
http://www.cnblogs.com/zhaoyanjun/p/6016341.html 本文出自[赵彦军的博客] 前言 ButterKnife 简介 ButterKnife是一个专注于And ...
- Python模块学习 - openpyxl
openpyxl模块介绍 openpyxl模块是一个读写Excel 2010文档的Python库,如果要处理更早格式的Excel文档,需要用到额外的库,openpyxl是一个比较综合的工具,能够同时读 ...
- python自动开发之第二十四天(Django)
一.ModelForm操作及验证 1.class Meta:class Meta: #注意以下字段不能加逗号 model = models.UserInfo #这里的all代指所用的字段,也可以是一个 ...
- sk_buff结构
sk_buff结构用来描述已接收或者待发送的数据报文信息:skb在不同网络协议层之间传递,可被用于不同网络协议,如二层的mac或其他链路层协议,三层的ip,四层的tcp或者udp协议,其中某些成员变量 ...