思路是hdu6134的简化版,只需要在外面套上一个枚举素数就行了。

http://www.cnblogs.com/autsky-jadek/p/7491730.html

#include<cstdio>
using namespace std;
#define N 10000000
bool notpri[N+5];
int pri[N+5],mu[N+5],sum[N+5];
typedef long long ll;
void shai_mu()
{
notpri[1]=1; mu[1]=1;
for(int i=2;i<=N;i++){
if(!notpri[i]){
pri[++pri[0]]=i;
mu[i]=-1;
}
for(int j=1;j<=pri[0];j++){
if((ll)i*(ll)pri[j]>(ll)N){
break;
}
notpri[i*pri[j]]=1;
mu[i*pri[j]]=-mu[i];
if(i%pri[j]==0){
mu[i*pri[j]]=0;
break;
}
}
}
sum[1]=mu[1];
for(int i=2;i<=N;i++){
sum[i]=sum[i-1]+mu[i];
}
}
int n;
int main(){
shai_mu();
scanf("%d",&n);
ll ans=0;
for(int i=2;i<=n;++i){
if(!notpri[i]){
int nn=n/i;
for(int j=1;j<=n/i;){
ans+=(ll)(sum[nn/(nn/j)]-sum[j-1])*(ll)(nn/j)*(ll)(nn/j);
j=nn/(nn/j)+1;
}
}
}
printf("%lld\n",ans);
return 0;
}

【数论】【枚举】【莫比乌斯反演】【线性筛】bzoj2818 Gcd的更多相关文章

  1. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  2. 【bzoj2694】Lcm 莫比乌斯反演+线性筛

    题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...

  3. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  4. Luogu2257 YY的GCD/BZOJ2818 Gcd加强版(莫比乌斯反演+线性筛)

    一通套路之后得到 求出中间那个函数的前缀和的话就可以整除分块了. 暴力求的话复杂度其实很优秀了,大约在n~nlogn之间. 不过可以线性筛做到严格线性.考虑其最小质因子,如果是平方因子那么只有其有贡献 ...

  5. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  6. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

  7. 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

  8. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  9. Luogu 4917 天守阁的地板(莫比乌斯反演+线性筛)

    既然已经学傻了,这个题当然是上反演辣. 对于求积的式子,考虑把[gcd=1]放到指数上.一通套路后可以得到∏D∏d∏i∏j (ijd2)μ(d) (D=1~n,d|D,i,j=1~n/D). 冷静分析 ...

  10. bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】

    看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...

随机推荐

  1. upupw注入by pass

    http:' and updatexml(null,concat(0x5c,(/*!00000select SCHEMA_name*/from/*!information_schema*/.schem ...

  2. Django rest framework 的认证流程(源码分析)

    一.基本流程举例: urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^users/', views.HostView.as_view() ...

  3. FISCO-BCOS平台共识

    FISCO-BCOS 应用于区块链的多节点并行拜占庭容错共识算法 看了下微众平台的wiki共识知识 学习下 ()内是自己的思考  参考: https://github.com/FISCO-BCOS/W ...

  4. 苹果电脑Mac OS系统重装图文详解

    苹果电脑Mac OS系统重装图文详解 本文来自于[系统之家] www.xp85.com现在电脑都很强大,可是也很脆弱,常常需要你去维护,甚至经常需要你重装系统,那么Mac OS又如何重装系统呢?刚刚使 ...

  5. VO、DTO、DO、PO的概念、区别和用处

    转至:http://qixuejia.cnblogs.com/ 本篇文章主要讨论一下我们经常会用到的一些对象:VO.DTO.DO和PO. 由于不同的项目和开发人员有不同的命名习惯,这里我首先对上述的概 ...

  6. 深入浅出Node.js(一) - 初识Node.js

    1.Node.js将Javascript解决不确定性所使用的事件驱动方式引入了进来,因为JS是一门事件驱动的语言,旨在能够对外界的事件作出响应; 2.Node.js中,所有的有关异步的操作,都在同步操 ...

  7. 创建.dat文件(转载)

    比较有用的东比较有用的东西 首先,批处理文件是一个文本文件,这个文件的每一行都是一条DOS命令(大部分时候就好象我们在DOS提示符下执行的命令行一样),你可以使用DOS下的Edit或者Windows的 ...

  8. [ python ] hasattr()、getattr()、setattr() 三者关系及运用

    hasattr(object, name) 判断一个对象(object)是否存在name属性或方法,返回boolean值,有name属性返回True, 否则返回False In [1]: class ...

  9. 自定制Form组件

    代码 import re import copy class ValidateError(Exception): def __init__(self,detail): self.detail = de ...

  10. opencv python基本操作

    Python usage crop frame: croppedframe = frame[ymin:ymax, xmin:xmax] resize frame: reszframe = cv2.re ...