互不侵犯KING

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 3866  Solved: 2264
[Submit][Status][Discuss]

Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16

HINT

Source

试题分析:状压dp,设dp[i][j][k]代表i*i的矩形放j个国王,此行状态为k的二进制的种数

那么容易得到转移方程:dp[i][j][k]+=dp[i-1][j-cnt[k]][p]

其中cnt[k]表示k在二进制下1的数量,p表示枚举的上一行的状态

代码

/*bzoj 1087
wxjor 2017.06.06
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
//#include<cmath> using namespace std;
const int INF = 9999999;
#define LL long long inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
int N,K;
long long dp[10][100][1025];
int cansr[1025];
int tmp;
int cnt[1025];
void pre(){//预处理所有可行状态(在一行中KING互补侵犯)
bool flag=true;
for(int i=0;i<(1<<N);i++){
int a=0,sum=0;
flag=true;
int p=i;
while(i){
if((i&1)&&a){
flag=false;
break;
}
a=(i&1);
if(a) sum++;
i>>=1;
}
if(flag) cansr[++tmp]=p,cnt[tmp]=sum,dp[1][sum][p]=1;//计入
i=p;
}
return ;
}
bool check(int a,int b){//判断两行中是否会侵犯
if((a&b)||((a>>1)&b)||((a<<1)&b)||((b<<1)&a)||((b>>1)&a)) return false;
return true;
}
long long ans;
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
N=read(),K=read();
pre();
for(int i=2;i<=N;i++){
for(int j=0;j<=K;j++)//一开始写成了j=1
for(int k=1;k<=tmp;k++){
for(int p=1;p<=tmp;p++){
if(!check(cansr[k],cansr[p])) continue;
if(cnt[k]+cnt[p]>j) continue;//枚举的状态超出放的数量
dp[i][j][cansr[k]]+=dp[i-1][j-cnt[k]][cansr[p]];
}
}
}
for(int i=1;i<=tmp;i++) ans+=dp[N][K][cansr[i]];//求解答案
printf("%lld\n",ans);
return 0;
}
//dp[i][j][k]+=dp[i-1][j-cnt(k)][k']

  

【状压dp】互不侵犯KING的更多相关文章

  1. bzoj1087 [SCOI2005][状压DP] 互不侵犯King (状压)

    在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 ...

  2. 状压DP入门详解+题目推荐

    在动态规划的题型中,一般叫什么DP就是怎么DP,状压DP也不例外 所谓状态压缩,一般是通过用01串表示状态,充分利用二进制数的特性,简化计算难度.举个例子,在棋盘上摆放棋子的题目中,我们可以用1表示当 ...

  3. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  4. 【状压DP】bzoj1087 互不侵犯king

    一.题目 Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上.下.左.右,以及左上.左下.右上.右下八个方向上附近的各一个格子,共8个格子. I ...

  5. BZOJ-1087 互不侵犯King 状压DP+DFS预处理

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...

  6. bzoj1087 互不侵犯King 状压dp+bitset

    题目传送门 题目大意:中文题面. 思路:又是格子,n又只有9,所以肯定是状压dp,很明显上面一行的摆放位置会影响下一行,所以先预处理出怎样的二进制摆放法可以放在上下相邻的两行,这里推荐使用bitset ...

  7. 互不侵犯king (状压dp)

    互不侵犯king (状压dp) 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.\(1\le n\ ...

  8. BZOJ 1087:[SCOI2005]互不侵犯King(状压DP)

    [SCOI2005]互不侵犯King [题目描述] 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

  9. 状压入门--bzoj1087: [SCOI2005]互不侵犯King【状压dp】

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...

随机推荐

  1. POJ 3061 Subsequence ( 尺取法)

    题目链接 Description A sequence of N positive integers (10 < N < 100 000), each of them less than ...

  2. mybatis 插入语句name no find

    1.可参考连接:https://www.cnblogs.com/thomas12112406/p/6217211.html 2.dao层的配置 void addUser(@Param("un ...

  3. 使用idea+Tomcat搭建servlet服务器

    1.使用java 搭建一个简单的Servlet 服务器 https://blog.csdn.net/qq_35164169/article/details/76146655

  4. Java案例之随机验证码功能实现

    实现的功能比较简单,就是随机产生了四个字符然后输出.效果图如下,下面我会详细说一下实现这个功能用到了那些知识点,并且会把 这些知识点详细的介绍出来.哈哈 ,大神勿喷,对于初学Java的人帮助应该蛮大的 ...

  5. linux下删除已经不用的配置文件

    使用命令 dpkg -l | grep -v ^ii 查看当前未安装或者不用了的配置文件 例如我的显示如下

  6. go环境变量及build文件

    package main /* windows go环境设置: # 参考:https://blog.csdn.net/quicmous/article/details/80360126 GOROOT ...

  7. free函数在操作系统内存中的实现【转】

    转自:http://www.2cto.com/kf/201210/160985.html 我一次性malloc十个单位节点的内存空间出来赋值给L, 现在我想一次性删除从第3个到第6个节点,我是这么做的 ...

  8. 异步网络模块之aiohttp的使用(一)

    异步网络模块之aiohttp的使用(一) 平时我们也许用的更多的是requests模块,或者是requests_hml模块,但是他们都属于阻塞类型的不支持异步,速度很难提高,于是后来出现了异步的gre ...

  9. python爬虫面试总结

    1.爬虫有哪些模块? 答: URL管理模块:维护已经爬取的URL集合和未爬取的URL集合,并提供获取新URL链接的接口 HTML下载模块:从URL管理器中获取未爬取的URL链接并下载HTML网页 HT ...

  10. web请求响应

    转载自:SanMaoSpace 1.Web开发的定义首先看看微软对Web开发的定义:Web开发是一个指代网页或网站编写过程的广义术语.网页使用 HTML.CSS 和 JavaScript编写.这些页面 ...