互不侵犯KING

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 3866  Solved: 2264
[Submit][Status][Discuss]

Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16

HINT

Source

试题分析:状压dp,设dp[i][j][k]代表i*i的矩形放j个国王,此行状态为k的二进制的种数

那么容易得到转移方程:dp[i][j][k]+=dp[i-1][j-cnt[k]][p]

其中cnt[k]表示k在二进制下1的数量,p表示枚举的上一行的状态

代码

/*bzoj 1087
wxjor 2017.06.06
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
//#include<cmath> using namespace std;
const int INF = 9999999;
#define LL long long inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
int N,K;
long long dp[10][100][1025];
int cansr[1025];
int tmp;
int cnt[1025];
void pre(){//预处理所有可行状态(在一行中KING互补侵犯)
bool flag=true;
for(int i=0;i<(1<<N);i++){
int a=0,sum=0;
flag=true;
int p=i;
while(i){
if((i&1)&&a){
flag=false;
break;
}
a=(i&1);
if(a) sum++;
i>>=1;
}
if(flag) cansr[++tmp]=p,cnt[tmp]=sum,dp[1][sum][p]=1;//计入
i=p;
}
return ;
}
bool check(int a,int b){//判断两行中是否会侵犯
if((a&b)||((a>>1)&b)||((a<<1)&b)||((b<<1)&a)||((b>>1)&a)) return false;
return true;
}
long long ans;
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
N=read(),K=read();
pre();
for(int i=2;i<=N;i++){
for(int j=0;j<=K;j++)//一开始写成了j=1
for(int k=1;k<=tmp;k++){
for(int p=1;p<=tmp;p++){
if(!check(cansr[k],cansr[p])) continue;
if(cnt[k]+cnt[p]>j) continue;//枚举的状态超出放的数量
dp[i][j][cansr[k]]+=dp[i-1][j-cnt[k]][cansr[p]];
}
}
}
for(int i=1;i<=tmp;i++) ans+=dp[N][K][cansr[i]];//求解答案
printf("%lld\n",ans);
return 0;
}
//dp[i][j][k]+=dp[i-1][j-cnt(k)][k']

  

【状压dp】互不侵犯KING的更多相关文章

  1. bzoj1087 [SCOI2005][状压DP] 互不侵犯King (状压)

    在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 ...

  2. 状压DP入门详解+题目推荐

    在动态规划的题型中,一般叫什么DP就是怎么DP,状压DP也不例外 所谓状态压缩,一般是通过用01串表示状态,充分利用二进制数的特性,简化计算难度.举个例子,在棋盘上摆放棋子的题目中,我们可以用1表示当 ...

  3. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  4. 【状压DP】bzoj1087 互不侵犯king

    一.题目 Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上.下.左.右,以及左上.左下.右上.右下八个方向上附近的各一个格子,共8个格子. I ...

  5. BZOJ-1087 互不侵犯King 状压DP+DFS预处理

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...

  6. bzoj1087 互不侵犯King 状压dp+bitset

    题目传送门 题目大意:中文题面. 思路:又是格子,n又只有9,所以肯定是状压dp,很明显上面一行的摆放位置会影响下一行,所以先预处理出怎样的二进制摆放法可以放在上下相邻的两行,这里推荐使用bitset ...

  7. 互不侵犯king (状压dp)

    互不侵犯king (状压dp) 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.\(1\le n\ ...

  8. BZOJ 1087:[SCOI2005]互不侵犯King(状压DP)

    [SCOI2005]互不侵犯King [题目描述] 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

  9. 状压入门--bzoj1087: [SCOI2005]互不侵犯King【状压dp】

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...

随机推荐

  1. Java多线程学习(六)Lock锁的使用

    系列文章传送门: Java多线程学习(二)synchronized关键字(1) Java多线程学习(二)synchronized关键字(2) Java多线程学习(三)volatile关键字 Java多 ...

  2. 【转】cve-2013-2094 perf_event_open 漏洞分析

    cve-2013-2094是于2013年4月前后发现的linux kernel本地漏洞,该漏洞影响3.8.9之前开启了PERF_EVENT的linux系统.利用该漏洞,通过perf_event_ope ...

  3. Chrome控制台的妙用之使用XPATH

    谷歌浏览器,对于作为程序员的我们来说可以是居家必备了,应该用的相当的熟悉了,我们用的最多的应该是network选项吧,一般用来分析网页加载的请求信息,比如post参数之类的,这些基本的功能基本上够用了 ...

  4. CentOS下配置FTP

    http://www.cnblogs.com/zhenmingliu/archive/2012/04/25/2470646.html 常见错误: 1.FTP服务器已经拒绝 解决方案 # setenfo ...

  5. 2017百度春招<度度熊买帽子的问题>

    题目: 度度熊想去商场买一顶帽子,商场里有N顶帽子,有些帽子的价格可能相同.度度熊想买一顶价格第三便宜的帽子,问第三便宜的帽子价格是多少? 数组中找到第三小的数字  注意边界条件 用STL中的set来 ...

  6. leetcode 之Reverse Linked List II(15)

    这题用需要非常细心,用头插法移动需要考虑先移动哪个,只需三个指针即可. ListNode *reverseList(ListNode *head, int m, int n) { ListNode d ...

  7. django渲染模板时跟vue使用的{{ }}冲突解决方法

    var vm = new Vue({ el: '#app', // 分割符: 修改vue中显示数据的语法, 防止与django冲突 delimiters: ['[[', ']]'], data: { ...

  8. ActiveMQ基于JMS的pub/sub传播机制

    原文地址:[ActiveMQ实战]基于JMS的pub/sub传播机制 发布订阅模型 就像订阅报纸,我们可以选择一份或者多份报纸.比如:北京日报.人民日报.这些报纸就相当于发布订阅模型中的topic.如 ...

  9. classpath中怎样一次性加入整个目录的jar文件

    linux可以通过shell来处理 1 2 3 for jar in $HOME/lib/*.jar; do     CLASSPATH=$CLASSPATH:$jar done          

  10. connect-falsh的用法

    借鉴博客 http://yunkus.com/connect-flash-usage/