[BZOJ 1857] 传送带
Link:
Solution:
首先中间的两个拐点$C,D$肯定都在传送带$A,B$上
接下来感性发现固定点A/C,另一个点C/D时间随位置的变化为单峰函数
这样就是三分套三分了
严谨的证明还不会啊……
目前好像只能推出仅有一个零点,不过不太会证单调性啊……
Code:
#include <bits/stdc++.h> using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef double db;
typedef pair<db,db> P;
const db eps=1e-;
P A,B,C,D,L,R;db p,q,r; void read(P &t){scanf("%lf%lf",&t.X,&t.Y);}
db dist(P a,P b){return sqrt((a.X-b.X)*(a.X-b.X)+(a.Y-b.Y)*(a.Y-b.Y));} db check(db rat)
{
R=P(C.X+(D.X-C.X)*rat,C.Y+(D.Y-C.Y)*rat);
return dist(R,D)/q+dist(L,R)/r;
}
db solve(db rat)
{
L=P(A.X+(B.X-A.X)*rat,A.Y+(B.Y-A.Y)*rat);
db l=,r=;
while(fabs(l-r)>eps)
{
db lm=l+(r-l)/3.0,rm=r-(r-l)/3.0;
if(check(lm)<check(rm)) r=rm; else l=lm;
}
return dist(A,L)/p+check((l+r)/2.0);
} int main()
{
read(A);read(B);read(C);read(D);
scanf("%lf%lf%lf",&p,&q,&r);
db l=,r=;
while(fabs(l-r)>eps)
{
db lm=l+(r-l)/3.0,rm=r-(r-l)/3.0;
if(solve(lm)<solve(rm)) r=rm; else l=lm;
}
printf("%.2lf",solve((l+r)/2.0));
return ;
}
[BZOJ 1857] 传送带的更多相关文章
- BZOJ 1857 传送带 (三分套三分)
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从 ...
- BZOJ 1857: [Scoi2010]传送带
二次联通门 : BZOJ 1857: [Scoi2010]传送带 /* BZOJ 1857: [Scoi2010]传送带 三分套三分 可能是吧..dalao们都说明显是一个单峰函数 可是我证不出来.. ...
- bzoj 1857: [Scoi2010]传送带 三分
题目链接 1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 934 Solved: 501[Submit][Stat ...
- Bzoj 1857: [Scoi2010]传送带(三分套三分)
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...
- 传送带(bzoj 1857)
Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度 ...
- BZOJ 1857: [Scoi2010]传送带(三分套三分)
Time Limit: 1 Sec Memory Limit: 64 MB Submit: 2549 Solved: 1370 [Submit][Status][Discuss] Descriptio ...
- 【BZOJ 1857】【SCOI 2010】传送带
三分套三分,虽然简单,但是也得掌握,,, 时间复杂度$O(log_{1.5}^2 n)$ 一开始WA好几次发现是快速读入里没有return,这样也能过样例?_(:3J∠)_ #include<c ...
- bzoj 1857
三分,对于单凸的函数(单调的也可以),可以找出最值. 这道题可以感性认识一下...... /****************************************************** ...
- bzoj 1857 三分套三分
题目大意 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxh ...
随机推荐
- 【Luogu】 P3928 SAC E#1 - 一道简单题 Sequence2
[题目]洛谷10月月赛R1 提高组 [算法]递推DP+树状数组 [题解]列出DP递推方程,然后用树状数组维护前后缀和. #include<cstdio> #include<cstri ...
- 【51NOD-0】1137 矩阵乘法
[算法]简单数学 [题解] 对于A*B=C C中第i行第j列的数字由A中第i行和B中的j列的数字各自相乘后相加得到. 所以两个矩阵能相乘要求A的列数等于B的行数,复杂度为O(n3). #include ...
- HDU 1312 Red and Black (深搜)
题目链接 Problem Description There is a rectangular room, covered with square tiles. Each tile is colore ...
- 【HNOI】 小A的树 tree-dp
[题目描述]给定一颗树,每个点有各自的权值,任意选取两个点,要求算出这两个点路径上所有点的and,or,xor的期望值. [数据范围]n<=10^5 首先期望可以转化为求树上所有点对的and,o ...
- windows下 nginx安装 使用
介绍 Nginx (engine x) 是一个高性能的HTTP和反向代理服务器. 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络 ...
- Python作业模拟登陆(第一周)
模拟登陆:1. 用户输入帐号密码进行登陆2. 用户信息保存在文件内3. 用户密码输入错误三次后锁定用户 思路: 1. 用户名密码文件为passwd,锁定用户文件为lock 2. 用户输入账号密码采用i ...
- linux下删除已经不用的配置文件
使用命令 dpkg -l | grep -v ^ii 查看当前未安装或者不用了的配置文件 例如我的显示如下
- Perl6 Bailador框架(5):利用正则匹配路径
use v6; use Bailador; =begin pod 我们在路径设置上, 可以利正则表达式捕获的字符串作为子例程参数 =end pod get '/perl6/(.+)' => su ...
- js原生读取json
function showJson(){ var test; if(window.XMLHttpRequest){ test = new XMLHttpRequest(); }else if(wind ...
- Python模块学习 - Fileinput
Fileinput模块 fileinput是python提供的标准库,使用fileinput模块可以依次读取命令行参数中给出的多个文件.也就是说,它可以遍历 sys.argv[1:],并按行读取列表中 ...