4455: [Zjoi2016]小星星

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 707  Solved: 419
[Submit][Status][Discuss]

Description

小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品。她有n颗小星星,用m条彩色的细线串了起来,每条细
线连着两颗小星星。有一天她发现,她的饰品被破坏了,很多细线都被拆掉了。这个饰品只剩下了n?1条细线,但
通过这些细线,这颗小星星还是被串在一起,也就是这些小星星通过这些细线形成了树。小Y找到了这个饰品的设
计图纸,她想知道现在饰品中的小星星对应着原来图纸上的哪些小星星。如果现在饰品中两颗小星星有细线相连,
那么要求对应的小星星原来的图纸上也有细线相连。小Y想知道有多少种可能的对应方式。只有你告诉了她正确的
答案,她才会把小饰品做为礼物送给你呢。

Input

第一行包含个2正整数n,m,表示原来的饰品中小星星的个数和细线的条数。
接下来m行,每行包含2个正整数u,v,表示原来的饰品中小星星u和v通过细线连了起来。
这里的小星星从1开始标号。保证u≠v,且每对小星星之间最多只有一条细线相连。
接下来n-1行,每行包含个2正整数u,v,表示现在的饰品中小星星u和v通过细线连了起来。
保证这些小星星通过细线可以串在一起。
n<=17,m<=n*(n-1)/2

Output

输出共1行,包含一个整数表示可能的对应方式的数量。
如果不存在可行的对应方式则输出0。

Sample Input

4 3
1 2
1 3
1 4
4 1
4 2
4 3

Sample Output

6

HINT

Source

一个很好理解的题解:https://blog.csdn.net/johann_oier/article/details/51090513

思路就是:如果集合可重,那么我们对于以i为根的子树,直接枚举这些节点的集合,然后f[i][j]表示i映射到原图的j的方案数。

那么现在集合不可重怎么办呢?去掉这个限制的一个好办法就是容斥,显然最后整棵树对应的集合是全集,那么我们将映射集合为全集的方案数-映射集合大小为n-1的方案数+大小为n-2的方案数-...,最后就是答案了。

#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=;
ll f[N][N];
int n,m,ed,x,y,cnt,hash[N],g[N][N],mp[N][N],fa[N],p[N],q[N],h[N],to[N],nxt[N];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void bfs(int s){
int l=,r=; q[]=s;
while (l<=r){
int x=q[l],c=; l++;
rep(i,,n) if (mp[x][i] && i!=fa[x]) q[++r]=i,fa[i]=x,++c,add(x,i);
if (!c) hash[x]=;
}
} void dp(int s,int sta,int cnt){
for (int i=n; i; i--){
int x=q[i];
if (hash[x]) continue;
rep(j,,cnt){
for (int i=h[x],k; i; i=nxt[i])
if (fa[k=to[i]]==x){
ll sm=;
rep(l,,cnt) if (g[p[j]][p[l]]) sm+=f[k][l];
f[x][j]*=sm;
}
}
}
} int get(int x){
int cnt=;
for (int j=; x; x>>=,j++) if (x & ) p[++cnt]=j; x>>=;
return cnt;
} int main(){
freopen("bzoj4455.in","r",stdin);
freopen("bzoj4455.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,,n) g[i][i]=;
rep(i,,m) scanf("%d%d",&x,&y),g[x][y]=g[y][x]=;
rep(i,,n-) scanf("%d%d",&x,&y),mp[x][y]=mp[y][x]=;
bfs(); ll ans=; int tag=n&;
for (int sta=; sta<(<<n); sta++){
int cnt=get(sta);
ll flag=((cnt&)==tag)?:-,s=;
rep(i,,n) rep(j,,cnt) f[i][j]=;
dp(,sta,cnt);
rep(i,,cnt) s+=f[][i];
ans+=flag*s;
}
printf("%lld\n",ans);
return ;
}

[BZOJ4455][ZJOI2016]数星星(容斥DP)的更多相关文章

  1. 「LOJ2091」「ZJOI2016」小星星 容斥+DP

    题目描述 小 Y 是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用 \(m\)条彩色的细线串了起来,每条细线连着两颗小星星.有一天她发现,她的饰品被破坏了,很多细线都被拆掉 ...

  2. [ZJOI2016]小星星(容斥+dp)

    洛谷链接:https://www.luogu.org/problemnew/show/P3349 题意相当于给一棵树重新赋予彼此不同的编号,要求树上相邻的两个节点在给定的另外一个无向图中也存在边相连. ...

  3. [zjoi2016]小星星 (容斥+DP)

    我们先用树形DP,求出选取集合S中的点,满足连通性的但是标号可重的方案数,贡献给F(i)(1\(\leq\)i\(\leq\)\(\mid S\mid\)),也就是我们要处理出F(i)代表取至多i个点 ...

  4. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  5. 【XSY3156】简单计数II 容斥 DP

    题目大意 定义一个序列的权值为:把所有相邻的相同的数合并为一个集合后,所有集合的大小的乘积. 特别的,第一个数和最后一个数是相邻的. 现在你有 \(n\) 种数,第 \(i\) 种有 \(c_i\) ...

  6. [CF1086E]Beautiful Matrix(容斥+DP+树状数组)

    给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...

  7. 【BZOJ3622】已经没有什么好害怕的了 容斥+DP

    [BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...

  8. $bzoj2560$ 串珠子 容斥+$dp$

    正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...

  9. 洛谷P5206 [WC2019]数树 [容斥,DP,生成函数,NTT]

    传送门 Orz神仙题,让我长了许多见识. 长式子警告 思路 y=1 由于y=1时会导致后面一些式子未定义,先抓出来. printf("%lld",opt==0?1:(opt==1? ...

随机推荐

  1. 微信公众号支付开发全过程(Java 版)

    一.微信官方文档微信支付开发流程(公众号支付) 首先我们到微信支付的官方文档的开发步骤部分查看一下需要的设置. [图片上传失败...(image-5eb825-1531014079742)] 因为微信 ...

  2. Drainage Ditches(POJ1273+网络流+Dinic+EK)

    题目链接:poj.org/problem?id=1273 题目: 题意:求最大流. 思路:测板子题,分别用Dinic和EK实现(我的板子跑得时间均为0ms). Dinic代码实现如下: #includ ...

  3. bzoj 1084 DP

    首先对于m==1的情况非常容易处理(其实这儿因为边界我错了好久...),直接DP就好了,设f[i][k]为这个矩阵前i个选k个矩阵的最大和,那么f[i][k]=max(f[j][k-1]+sum[j+ ...

  4. Python 对象模型 -- (转)

    面向对象的纯粹性 在很久很久以前,C++还被称为面向对象语言(现在一般称为多范式通用语言),人们就对C++的面向对象的纯粹性提出了质疑,主要有以下几点: 并非所有的对象都是对象(很拗口?),比如指针本 ...

  5. javascript中=、==与===的区别

    1.等号 =赋值运算符,给变量赋值 var a="1"; 2.相等和不相等操作符 相等操作符由==表示,若两个操作数相等,则返回true:不相等操作符由!=表示,若两个操作数不相等 ...

  6. Java多线程学习(六)Lock锁的使用

    系列文章传送门: Java多线程学习(二)synchronized关键字(1) Java多线程学习(二)synchronized关键字(2) Java多线程学习(三)volatile关键字 Java多 ...

  7. url编码模块

    use LWP::SImple; use URI::Escape; encoded_string = uri_escape(raw_string); get(encoded_string);

  8. Vue组件-组件的注册

    注册组件 全局组件 注册组件就是利用Vue.component()方法,先传入一个自定义组件的名字,然后传入这个组件的配置. Vue.component('my-component', { templ ...

  9. Linux内核模块编程可以使用的内核组件

    2.2.2 在阅读<深入Linux内核架构与底层原理> 作者:刘京洋 韩方,发现一些错误,有些自己的理解,特以此记录 1.工作队列(workqueue) 队列是一种可以先进先出的数据结构, ...

  10. 【openjudge】C15C Rabbit's Festival CDQ分治+并查集

    题目链接:http://poj.openjudge.cn/practice/C15C/ 题意:n 点 m 边 k 天.每条边在某一天会消失(仅仅那一天消失).问每一天有多少对点可以相互到达. 解法:开 ...