HDU 5212 莫比乌斯反演
Code
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1306 Accepted Submission(s): 540
The function:
int calc
{
int res=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
res+=gcd(a[i],a[j])*(gcd(a[i],a[j])-1);
res%=10007;
}
return res;
}
For each case:
The first line contains an integer N(1≤N≤10000).
The next line contains N integers a1,a2,...,aN(1≤ai≤10000).
Print an integer,denoting what the function returns.
1 3 4 2 4
gcd(x,y) means the greatest common divisor of x and y.
题意:给定序列1≤i,j≤n,求gcd(a[i],a[j])∗(gcd(a[i],a[j])−1)之和。
思路:倍数莫比乌斯反演。
代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e5 + ;
const int mod=;
int t;
//线性筛法求莫比乌斯函数
bool vis[N + ];
int pri[N + ];
int mu[N + ];
int sum[N]; void mus() {
memset(vis, , sizeof(vis));
mu[] = ;
int tot = ;
for (int i = ; i < N; i++) {
if (!vis[i]) {
pri[tot++] = i;
mu[i] = -;
}
for (int j = ; j < tot && i * pri[j] < N; j++) {
vis[i * pri[j]] = ;
if (i % pri[j] == ) {
mu[i * pri[j]] = ;
break;
}
else mu[i * pri[j]] = -mu[i];
}
}
sum[]=;
for(int i=;i<N;i++) sum[i]=sum[i-]+mu[i];
}
int n,m,k; int a[N];
int b[N];
int F[N];
int main() {
mus();
while(scanf("%d",&n)==){
int ma=;
memset(F,, sizeof(F));
memset(b,, sizeof(b));
for(int i=;i<n;i++){
scanf("%d",&a[i]);
b[a[i]]++;//b[a[i]]的个数
ma=max(ma,a[i]);
}
for(int i=;i<=ma;i++)
for(int j=i;j<=ma;j+=i) F[i]+=b[j];//在范围内i的倍数的个数
ll ans=;
for(int i=;i<=ma;i++){
ll res=;
for(int j=i;j<=ma;j+=i){
if(!F[j]) continue;
res+=1ll*mu[j/i]*F[j]*F[j]%mod;//公约数均为i
}
ans=(ans+res*i%mod*(i-))%mod;//同时乘上i*i-1
}
ans%=mod;
ans+=mod;
ans%=mod;
printf("%lld\n",ans);
}
return ;
}
HDU 5212 莫比乌斯反演的更多相关文章
- HDU 4746 (莫比乌斯反演) Mophues
这道题看巨巨的题解看了好久,好久.. 本文转自hdu4746(莫比乌斯反演) 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<= ...
- HDU 1695 (莫比乌斯反演) GCD
题意: 从区间[1, b]和[1, d]中分别选一个x, y,使得gcd(x, y) = k, 求满足条件的xy的对数(不区分xy的顺序) 分析: 虽然之前写过一个莫比乌斯反演的总结,可遇到这道题还是 ...
- GCD HDU - 1695 莫比乌斯反演入门
题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/ ...
- hdu 1695(莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 6053(莫比乌斯反演)
题意略. 思路:首先想到暴力去扫,这样的复杂度是n * min(ai),对于gcd = p,对答案的贡献应该是 (a1 / p) * (a2 / p) * .... * (an / p),得出这个贡献 ...
- hdu 4746Mophues[莫比乌斯反演]
Mophues Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327670/327670 K (Java/Others) Total ...
- 算术 HDU - 6715 (莫比乌斯反演)
大意: 给定$n,m$, 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m\mu(lcm(i,j))$ 首先有$\mu(lcm(i,j))=\mu(i)\mu(j)\m ...
- HDU 4746 莫比乌斯反演+离线查询+树状数组
题目大意: 一个数字组成一堆素因子的乘积,如果一个数字的素因子个数(同样的素因子也要多次计数)小于等于P,那么就称这个数是P的幸运数 多次询问1<=x<=n,1<=y<=m,P ...
- HDU 5382 莫比乌斯反演
题目大意: 求S(n)的值 n<=1000000 这是官方题解给出的推导过程,orz,按这上面说的来写,就不难了 这里需要思考的就是G(n)这个如何利用积性函数的性质线性筛出来 作为一个质数,那 ...
随机推荐
- 最小生成树-Prim算法与Kruskal算法
一.最小生成树(MST) ①.生成树的代价:设G=(V,E)是一个无向连通网,生成树上各边的权值之和称为该生成树的代价. ②.最小生成树:在图G所有生成树中,代价最小的生成树称为最小生成树. 最小生成 ...
- RedHat(Linux) Oracle数据库设置开机自启动
1 首先修改/etc/oratab文件添加如下行:ycr:/u01/app/oracle/product/12.1.0/dbhome_1:Y 关于/etc/oratab文件解释如下:# This fi ...
- 第二次作业——MathExamLv2
MathExamLv2--林志松 211406285 李明康 211606314 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际 ...
- java的串行化
参考博客:Java 对象的串行化(Serialization) 1,什么是串行化 对象的寿命通常随着生成该对象的程序的终止而终止.有时候,可能需要将对象的状态保存下来,在需要时再将对象恢复.我们把对象 ...
- JQuery的异步回调支持 - Promise、Deferred
1.Deferred对象: 一般在函数内部进行声明,并在运行过程中改变其状态,例如成功或失败,最终返回Promise对象用于状态监听. 主要方法: Deferred.resolve(param...) ...
- iOS开发中方法延迟执行的几种方式
概述 项目开发中经常会用到方法的延时调用,下面列举常用的几种实现方式: 1.performSelector 2.NSTimer 3.NSThread线程的sleep 4.GCD 1.performSe ...
- 用python实现ping
#!/usr/bin/env python #coding=utf-8 import os import argparse import socket import struct import sel ...
- linux内核自己添加模块(内核版本:3.0.101)
做内核驱动第一步都是学习如何添加模块,这是基础,有了这个基础,剩下就是写代码了. 由于2.4到2.6内核版本的更新,无论是系统调用还是模块添加机制都有了巨大的变化,本人也因此饱经挫折,最后在3.0.1 ...
- [转]Python中下划线以及命名空间的意义
Python 用下划线作为变量前缀和后缀指定特殊变量/方法. 主要存在四种情形 1. 1. object # public 2. __object__ # special, python sys ...
- HDU 2030 汉字统计(汉字Asics码为负,占两个char)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2030 汉字统计 Time Limit: 2000/1000 MS (Java/Others) M ...