原以为是用搜索做的题,想了好久都无法想到一个高效正确的解法。

后面发现竟然这就是矩阵的应用! 碉堡!

给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值  ——选自matrix67
    把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,如果要求经过k步的路径数,我们只需要二分求出A^k即可。

K - Mistwald

Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

Description

In chapter 4 of the game Trails in the Sky SC, Estelle Bright and her friends are crossing Mistwald to meet their final enemy, Lucciola.

Mistwald is a mysterious place. It consists of M * N scenes, named Scene (1, 1) to Scene (MN). Estelle Bright and her friends are initially at Scene (1, 1), the entering scene. They should leave Mistwald from Scene (MN), the exiting scene. Note that once they reach the exiting scene, they leave Mistwald and cannot come back. A scene in Mistwald has four exits, north, west, south, and east ones. These exits are controlled by Lucciola. They may not lead to adjacent scenes. However, an exit can and must lead to one scene in Mistwald.

Estelle Bright and her friends walk very fast. It only takes them 1 second to cross an exit, leaving a scene and entering a new scene. Other time such as staying and resting can be ignored. It is obvious that the quicker they leave Mistwald, the better.

Now you are competing with your roommate for who uses less time to leave Mistwald. Your roommate says that he only uses P seconds. It is known that he lies from time to time. Thus, you may want to code and find out whether it is a lie.

Input

There are multiple test cases. The first line of input is an integer T ≈ 10 indicating the number of test cases.

Each test case begins with a line of two integers M and N (1 ≤ MN ≤ 5), separated by a single space, indicating the size of Mistwald. In the next M lines, the ith line contains N pieces of scene information, separated by spaces, describing Scene (i, 1) to Scene (iN). A scene description has the form "((x1,y1),(x2,y2),(x3,y3),(x4,y4))" (1 ≤ xk ≤ M; 1 ≤ yk ≤ N; 1 ≤ k ≤ 4) indicating the locations of new scenes the four exits lead to. The following line contains an integer Q (1 ≤ Q ≤ 100). In the next Q lines, each line contains an integer P (0 ≤ P ≤ 100,000,000), which is the time your roommate tells you.

Test cases are separated by a blank line.

Output

For each P, output one of the following strings in one line: "True" if it cannot be a lie; "Maybe" if it can be a lie; "False" if it must be a lie.

Print a blank line after each case.

Sample Input

2
3 2
((3,1),(3,2),(1,2),(2,1)) ((3,1),(3,1),(3,1),(3,1))
((2,1),(2,1),(2,1),(2,2)) ((3,2),(3,2),(3,2),(3,2))
((3,1),(3,1),(3,1),(3,1)) ((3,2),(3,2),(3,2),(1,1))
3
1
2
10 2 1
((2,1),(2,1),(2,1),(2,1))
((2,1),(2,1),(2,1),(2,1))
2
1
2

Sample Output

Maybe
False
Maybe True
False
 
 
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
using namespace std; int n,m;
bool g[][];
int x[],y[];
bool tg[][]; void mul(bool s[][],bool t[][])
{
bool tmp[][];
int top=n*m;
memset(tmp,,sizeof(tmp));
for(int k=;k<top;k++)
for(int i=;i<top;i++)
for(int j=;j<top;j++)
{
tmp[i][j]|=(s[i][k]&t[k][j]);
} for(int i=;i<top;i++)
for(int j=;j<top;j++)
s[i][j]=tmp[i][j]; } int main()
{
int T;
scanf("%d",&T);
while(T--)
{
memset(g,,sizeof(g)); scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
for(int j=;j<m;j++)
{
int id=i*m+j;
scanf(" ((%d,%d),(%d,%d),(%d,%d),(%d,%d))",&x[],&y[],&x[],&y[],&x[],&y[],&x[],&y[]);
if(i!=n-||j!=m-)
{
for(int k=;k<=;k++)
{
int tid=(x[k]-)*m+y[k]-;
g[id][tid]=;
}
}
}
int q;
scanf("%d",&q);
while(q--)
{
int tmp;
scanf("%d",&tmp);
bool sum[][];
for(int i=;i<n*m;i++)
for(int j=;j<n*m;j++)
{
if(i==j) sum[i][j]=;
else sum[i][j]=;
tg[i][j]=g[i][j];
}
while(tmp)
{
if((tmp&)) mul(sum,tg);
mul(tg,tg);
tmp>>=;
}
if(sum[][n*m-]==) printf("False\n");
else
{
int flag=;
for(int i=;i<n*m-;i++)
{
if(g[][i]!=)
{
flag=;
break;
}
}
if(flag) printf("Maybe\n");
else printf("True\n");
}
}
printf("\n");
}
return ;
}

zoj3497(经典矩阵乘法)的更多相关文章

  1. poj3233之经典矩阵乘法

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 12346   Accepted:  ...

  2. hdu1588之经典矩阵乘法

    Gauss Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. 【矩阵乘法经典应用】【ZOJ3497】【Mistwa】

    题意:给定一个有向图(最多25个节点,每个节点的出度最多为4),给定起点和终点,然后从起点开始走,走到终点就停止,否则一直往下走,问能不能P步到达终点.也就是说从起点出发,走一条长度为P的路径,路径中 ...

  4. 学习心得:《十个利用矩阵乘法解决的经典题目》from Matrix67

    本文来自:http://www.matrix67.com/blog/archives/tag/poj大牛的博文学习学习 节选如下部分:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律:二,矩阵乘法满足 ...

  5. 【转】Matrix67:十个利用矩阵乘法解决的经典题目

    好像目前还没有这方面题目的总结.这几天连续看到四个问这类题目的人,今天在这里简单写一下.这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质.    不要以为数学中的矩阵也是黑色屏幕上不断变化的 ...

  6. CH Round #30 摆花[矩阵乘法]

    摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...

  7. 【BZOJ-1898】Swamp 沼泽鳄鱼 矩阵乘法

    1898: [Zjoi2005]Swamp 沼泽鳄鱼 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1012  Solved: 566[Submit][S ...

  8. 【poj3070】矩阵乘法求斐波那契数列

    [题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...

  9. 如何使用矩阵乘法加速动态规划——以[SDOI2009]HH去散步为例

    对这个题目的最初理解 开始看到这个题,觉得很水,直接写了一个最简单地动态规划,就是定义 f[i][j]为到了i节点路径长度为j的路径总数, 转移的话使用Floyd算法的思想去转移,借助这个题目也理解了 ...

随机推荐

  1. 【OpenGL基础篇】——使用面向对象方法封装OpenGL函数(二)

    今天封装了一个Line类.负责在昨天写的窗体上绘制线条. OpenGL画图是通过给glBegin函数设置參数达成的,绘制线条有三个不同的參数: GL_LINES : 绘制连接两个点的线段(绘制的端点位 ...

  2. (七)Oracle学习笔记—— 游标

    1.游标简介 游标用来处理从数据库中检索的多行记录(使用SELECT语句).利用游标,程序可以逐个地处理和遍历一次检索返回的整个记录集. 为了处理SQL语句,Oracle将在内存中分配一个区域,这就是 ...

  3. Github 入门基本操作

    翻译自:https://guides.github.com/activities/hello-world/ 文章概述: 什么是GitHub? 创建一个存储库 创建一个分支 做出承诺 打开拉请求 合并拉 ...

  4. zabbix触发的多条件判断表达式

    2 Trigger expression   Overview The expressions used in triggers are very flexible. You can use them ...

  5. 教程:VS2010 之TFS入门指南(转载)

    [原文发表地址] Tutorial: Getting Started with TFS in VS2010 [原文发表时间] Wednesday, October 21, 2009 1:00 PM 本 ...

  6. 环境搭建基础知识2(sublime text3中配置verilog语法高亮)

    需求说明:Verilog设计 内容       :verilog开发环境搭建 来自       :时间的诗 1 软件下载 1.1 官方下载 地址http://www.sublimetext.com/3 ...

  7. SMARTY 变量

    变量 模板变量以美元符号$开头,由字母.数组和下划线组成,和 PHP variable相似. 变量可以引用数字索引或非数字索引的数组,对象的属性和方法等. 配置变量 是例外的,它不是以美元符号$开头, ...

  8. qt中执行 sql文件的方法

    由于qt中没有原生的执行sql文件的方法.因此我们需要根据sql文件中的流的特点,将其分解成一个个语句单独执行. 1.首先通过Qfile读取sql文件 2.将sql文件中的内容通过“:”进行拆解 3. ...

  9. HTML5自定义属性之data-index

    #使用jquery获取data-index的值 jquery 的版本最好高一些 #html <div id = 'div'><span data-field='demo'>&l ...

  10. IP代理软件

    IP代理软件 IP代理软件就是通过第三方网络协议传输数据的一种加密软件:跟VPN,代理服务器原理一样,是一种特殊的网络服务,允许一个网络终端(一般为客户端)通 过这个服务与另一个网络终端(一般为服务器 ...