质数检测一般都是根号n的写法 当然Mr判素数的方法可以实现log的复杂度2333

Mr判素数的话 我们根据费马小定理只要P是素数 那么另一个素数x 满足 x^P-1≡1(mod P)

同时 x^2%P==1 的解只有 x==1||x==P-1 可以利用这第二个式子做二次探测

利用 2 3 5 7 11 13 17 这七个素数可以保证int内正确性QAQ

当然记得判断2 3 5 7 11 13 17  因为费马小定理成立的条件是 x和P 互质

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int T,n;
int num[]={,,,,,,};
LL pmod(LL a,LL b,LL c){
LL ans=;
while(b){
if(b&) ans=ans*a%c;
b>>=; a=a*a%c;
}
return ans;
}
bool calc(LL x,LL P){
LL ly=P-,yy,last;
while(ly%==) ly/=;
last=yy=pmod(x,ly,P);
while(ly!=P-){
yy=yy*yy%P;
if(yy==&&last!=&&last!=P-) return ;
ly*=; last=yy;
}
return yy==;
}
bool pd(LL n){
if(n==||n==||n==||n==||n==||n==||n==) return ;
for(int i=;i<;i++)if(!calc(num[i],n)) return ;
return ;
}
int main(){
T=read();
while(T--){
n=read();
if(pd(n)) printf("Yes\n");
else printf("No\n");
}
return ;
}

51nod 1106 质数检测——Mr判素数的更多相关文章

  1. (数论 欧拉筛法)51NOD 1106 质数检测

    给出N个正整数,检测每个数是否为质数.如果是,输出"Yes",否则输出"No".   Input 第1行:一个数N,表示正整数的数量.(1 <= N &l ...

  2. 51nod 1106 质数检测

    #include <bits/stdc++.h> using namespace std; int n; ; bool s[maxn]; void is_prime() { memset( ...

  3. 51nod 1186 质数检测 V2

    1186 质数检测 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 给出1个正整数N,检测N是否为质数.如果是,输出"Yes&quo ...

  4. 【51NOD-0】1106 质数检测

    [算法]数学 #include<cstdio> #include<cmath> bool ok(int x) { int m=(int)sqrt(x+0.5); ;i<= ...

  5. 51nod 1181 质数中的质数(质数筛法)

    题目链接:51nod 1181 质数中的质数(质数筛法) #include<cstdio> #include<cmath> #include<cstring> #i ...

  6. UVA10200-Prime Time/HDU2161-Primes,例题讲解,牛逼的费马小定理和欧拉函数判素数。

                                                    10200 - Prime Time 此题极坑(本菜太弱),鉴定完毕,9遍过. 题意:很简单的求一个区间 ...

  7. miller_rabin算法检测生成大素数的RSA算法实现

      import math from functools import reduce #用于合并字符 from os import urandom #系统随机的字符 import binascii # ...

  8. 【BZOJ-3667】Rabin_Miller算法 随机化判素数

    3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 983  Solved: 302[Submit][Status ...

  9. 【Miller-Rabin随机判素数算法】

    实用性介绍: #include<bits/stdc++.h> #define go(i,a,b) for(int i=a;i<=b;i++) #define T 5 #define ...

随机推荐

  1. oracle数据库之触发器

    触发器是许多关系数据库系统都提供的一项技术.在 ORACLE 系统里,触发器类似过程和函数,都有声明,执行和异常处理过程的 PL/SQL 块. 一. 触发器类型 触发器在数据库里以独立的对象存储,它与 ...

  2. 后端设置cookie写不到前端页面

    javax.servlet.http.Cookie cookie = new javax.servlet.http.Cookie("id",session.getId()); co ...

  3. C#添加本地打印机

    class Program { static void Main(string[] args) { const string printerName = "Print to file&quo ...

  4. 如何取得dbgrid中未保存(post)的值(50分)

    比如说处在编辑状态时,想取得当前记录值 Dataset.fields[0].Value 就是当前值:Dataset.fields[0].OldValue 就是原始值. 呵呵,我指得是在编辑时,就是按键 ...

  5. 【Python】Python 新式类介绍

    本文转载自:kaka_ace's blog 我们使用 Python 开发时, 会遇到 class A 和 class A(object) 的写法, 这在 Python2 里是有概念上和功能上的区别, ...

  6. 【bzoj1798】[Ahoi2009]Seq 维护序列seq 线段树

    题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...

  7. 【bzoj1634】[Usaco2007 Jan]Protecting the Flowers 护花 贪心

    题目描述 Farmer John went to cut some wood and left N (2 <= N <= 100,000) cows eating the grass, a ...

  8. [LOJ #2473] [九省联考2018] 秘密袭击coat

    题目链接 洛谷. LOJ,LOJ机子是真的快 Solution 我直接上暴力了...\(O(n^2k)\)洛谷要\(O2\)才能过...loj平均单点一秒... 直接枚举每个点为第\(k\)大的点,然 ...

  9. [洛谷P3346][ZJOI2015]诸神眷顾的幻想乡

    题目大意:给你一棵$n$个点的树,最多有$20$个叶子节点,问共有几个不同的子串 题解:广义$SAM$,对每个叶子节点深搜一次,每个节点的$lst$设为这个节点当时的父亲,这样就可以时建出来的$SAM ...

  10. BZOJ5314:[JSOI2018]潜入行动——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5314 https://www.luogu.org/problemnew/show/P4516 ht ...