Updating....
这几个玩意儿要记的东西太多太乱所以写blog整理一下
虽然蒯的成分会比较多全部
我居然开始记得写blog了??

第一类

这里讨论的是无符号类型的。
OEIS编号A130534

表示方法

\(s(n,m)\)或者\(\begin{bmatrix}n \\ m\end{bmatrix}\)
注意前者是小写s

意义

\(n\)个元素的项目分作\(m\)个非空环排列的方法数目

求法

递归求解法
\[\begin{bmatrix}n\\m\end{bmatrix}=\begin{bmatrix}n-1\\m-1\end{bmatrix}+(n-1)\begin{bmatrix}n-1\\m\end{bmatrix}\]
这个就是说新建一个环排列或者插入已有的环排列
可怕 这很\(O(n^2)\)

各种性质

\(\begin{bmatrix}n\\1\end{bmatrix}=(n-1)!\)
\(\begin{bmatrix}n\\2\end{bmatrix}=(n-1)!\times\sum_{i=1}^{n-1}\frac 1 i\)
\(\sum_{i=0}^n \begin{bmatrix}n\\i\end{bmatrix}=n!\)
\(\begin{bmatrix}n\\n-1\end{bmatrix}=\binom{n}{2}\)
这里就不给出证明了
别的地方都有
也挺好记好想的
maybe

第二类

OEIS编号A008277

表示方法

\(S(n,m)\)或者\(\left\{\begin{matrix}n \\ m\end{matrix}\right\}\)
当然这里是大写S

意义

\(n\)个元素的集定义\(m\)个等价类的方法数目
。。。wiki害人
就是从环排列变成集合划分了
当然也要保证非空

求法

递归求解法
\[\begin{Bmatrix}n\\m\end{Bmatrix}=\begin{Bmatrix}n-1\\m-1\end{Bmatrix}+m\begin{Bmatrix}n-1\\m\end{Bmatrix}\]
同样也可以解释,新建or插入已有的
再次\(O(n^2)\)??别啊
幸好这玩意儿能搞容斥,通项就有了
\[\begin{Bmatrix}n\\m\end{Bmatrix}=\frac{1}{m!}\sum\limits_{k=0}^{m}(-1)^k\binom{m}{k}(m-k)^n\]
\(O(n)\)求解不是梦
好吧只求一个用这个会快
最重要的是这个能卷,也好搞些别的???
稍微整理一下
\[\left\{\begin{matrix}n\\m\end{matrix}\right\}=\sum_{k=0}^m\frac{(-1)^k}{k!}\frac{(m-k)^n}{(m-k)!}\]
就很舒服

Stirling 反演

两个柿子挺好记
但我暂时还搞不清具体是干嘛的。。。
\[f(x) = \sum_{i=0}^x \begin{Bmatrix}x\\i\end{Bmatrix} g(i) \Leftrightarrow g(x) = \sum_{i=0}^x (-1) ^ {x - i}\begin{bmatrix}x\\i\end{bmatrix} f(i)\]
\[f(x) = \sum_{i=0}^x \begin{bmatrix}x\\i\end{bmatrix} g(i) \Leftrightarrow g(x) = \sum_{i=0}^x (-1) ^ {x - i}\begin{Bmatrix}x\\i\end{Bmatrix} f(i)\]

Bell数

OEIS编号A000110
就是把第二类stirling数的集合划分个数限制去掉了
只限制了基数
也就是
\[B_n=\sum_{i=0}^n\begin{Bmatrix}n\\i\end{Bmatrix}\]
当然也可以直接\(O(n)\)递推
\[B_{n+1}=\sum_{k=0}^n\binom{n}{k}B_{k}\]

参考

%%%
https://www.cnblogs.com/NaVi-Awson/p/9242645.html
https://www.cnblogs.com/ezoiLZH/p/9424911.html
https://www.cnblogs.com/owenyu/p/6724661.html
https://blog.csdn.net/winycg/article/details/70233717

Stirling数笔记的更多相关文章

  1. lightOJ 1326 Race(第二类Stirling数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...

  2. 斯特灵数 (Stirling数)

    @维基百科 在组合数学,Stirling数可指两类数,都是由18世纪数学家James Stirling提出的. 第一类 s(4,2)=11 第一类Stirling数是有正负的,其绝对值是个元素的项目分 ...

  3. hdu 4372 第一类stirling数的应用/。。。好题

    /** 大意: 给定一系列楼房,都在一条水平线上,高度从1到n,从左侧看能看到f个, 从右侧看,能看到b个,问有多少种这样的序列.. 思路: 因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那 ...

  4. HDU 3625 Examining the Rooms:第一类stirling数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: 有n个房间,每个房间里放着一把钥匙,对应能开1到n号房间的门. 除了1号门,你可以踹开任 ...

  5. HDU 4372 Count the Buildings:第一类Stirling数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4372 题意: 有n栋高楼横着排成一排,各自的高度为1到n的一个排列. 从左边看可以看到f栋楼,从右边看 ...

  6. 整理一点与排列组合有关的问题[组合数 Stirling数 Catalan数]

    都是数学题 思维最重要,什么什么数都没用,DP直接乱搞(雾.. 参考LH课件,以及资料:http://daybreakcx.is-programmer.com/posts/17315.html 做到有 ...

  7. [总结] 第二类Stirling数

    上一道例题 我们来介绍第二类Stirling数 定义 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 .和第一类Stirling数不同的是,集合 ...

  8. Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)

    Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  9. 贝尔数(来自维基百科)& Stirling数

    贝尔数   贝尔数以埃里克·坦普尔·贝尔(Eric Temple Bell)为名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列):   Bell Number Bn是基数为n的集合 ...

随机推荐

  1. allocator类

    一.动态数组 [new的局限性] new将内存分配和对象构造组合在一起,同样delete将对象析构和内存释放组合在一起 我们分配单个对象时,通常希望将内存分配和对象初始化组合在一起(我们知道对象应有什 ...

  2. Thunder团队第五周 - Scrum会议2

    Scrum会议2 小组名称:Thunder 项目名称:i阅app Scrum Master:胡佑蓉 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传 ...

  3. 团队作业week9 情景测试

    一.使用人群:学生.计算机工作者.对计算机感兴趣的人 1.学生:学生是学霸系统的主要用户.学生一般会通过网络寻找与自己的课程,作业有关的信息.首先,可以通过我们的搜索功能在我们的数据库中寻找我们从网络 ...

  4. 软件工程 speedsnail 第二次冲刺9

    20150526 完成任务:划线的优化,速度和谐: 遇到问题: 问题1 速度仍然不满意 解决1 未解决 明日任务: 蜗牛碰到线后速度方向的调整:(做优化)

  5. WIN8/8.1/10进入BIOS方法图解

    1.首先点击桌面左下角的"开始". 2.然后点击电源. 3.然后按住shift,同时点击"重启".于是进入这个画面: 4.然后点击"疑难解答" ...

  6. shell练习题讲解

    写一个脚本,计算100以内所有的奇数的和以及所有偶数的和,分别显示出来#! /bin/bashsum1=0for i in `seq 1 2 100`do sum1=$[$sum1+$i]doneec ...

  7. maven Tomcat idea 热部署

    1.首先得有maven项目 2.配置tomcat,可以访问页面管理项目 修改: /conf/tomcat-users.xml <role rolename="manager-gui&q ...

  8. CURL & Fetch

    CURL & Fetch https://kigiri.github.io/fetch/ https://stackoverflow.com/questions/31039629/conver ...

  9. JAVA IDE IntelliJ IDEA使用简介(二)—之基本操作

    一.在编辑器中打开文件  1.可以使用下面的几种方式打开project内的文件进行编辑  (·)在project窗口中双击需要编辑的文件.  (·)在project窗口选择需要编辑的文件,按F4  ( ...

  10. [剑指Offer] 39.平衡二叉树

    题目描述 输入一棵二叉树,判断该二叉树是否是平衡二叉树. class Solution { public: int Get_Height(TreeNode* root) { if(root == NU ...