大并发server架构 && 大型站点架构演变
server的三条要求:
高性能:对于大量请求,及时高速的响应
高可用:7*24 不间断,出现问题自己主动转移。这叫fail over(故障转移)
伸缩性:使用跨机器的通信(TCP)
另外不论什么网络系统结构都能够抽象成C/S架构。我们常说的B/S模式本质上也是C/S架构(浏览器看作client)。
一个典型的server架构:
注: epoll是linux下最高效的网络I/O
因为server须要高效处理大并发连接。因此多个位置均可能出现性能瓶颈,以下我们分析不同位置产生瓶颈的原因及其处理方法:
(一)数据库瓶颈
【1】超过数据库的连接数的解决方法:加上一层DAL。使用队列等待(队列等待--数据訪问层)。也能够再使用连接池(DAL队列服务+连接池)这样不须要又一次连接。直接从池中找资源。
【2】超出时限的解决方法:
(1)将业务逻辑放置应用server(操作系统业务处理),数据库逻辑不要太复杂。仅仅是进行一定的辅助业务处理。
(2)缓存数据。可是面临缓存的更新和同步的问题,例如以下:
1. 缓存的时效性。if timeout then 又一次去数据库查询。(将热点数据放至缓存)这样的方法实时性较差。
2. 一旦数据库更新,马上通知前端缓存更新。
Update之后改动更新缓存,实时性较好。可能实现起来较难。
假设内存不够用,那么就放到外部磁盘,使用缓存换页机制(类似OS中的内存换页)。
上面提到的这些都能够使用开源产品实现:Nosql ---> (反sql )
主要存放非关系的数据。key/value
还有Redis 。memached 缓存等分布式开源软件。这些软件是能够跨server的。可是假设部署在应用server上,则是局部的,其它同级server訪问非常麻烦。
可是假设单独布置机器,使用分布式缓存,这些就是全局的。全部的应用server都能够訪问。方便快捷。
【3】数据库读写分离
数据库的查询操作一般比写操作频繁,我们能够对数据库进行负载均衡。使用主server进行写操作,从server进行读操作。DAL进行读写分离,通过replication机制进行主从server间的同步。
【4】数据分区(分库、分表)
分库:数据库能够依照一定的逻辑把表分散到不同的数据库--->垂直分区(用户表,业务表)
更加经常使用的分表--水平分区:将表中的记录分至不同的数据库,10条记录分至10个数据库,类似这样,这样的方式非常easy扩展水平结构。
(二)应用server瓶颈
加入任务server相应用server的任务分配进行负载均衡,当中又分为主动和被动两种方案:
(1)应用server被动接受方案:
使用任务server实现负载均衡,暴露一个接口,任务server能够当作一个client,应用server看作httpserver
任务server能够监视应用server的负载,CPU/IO/并发/内存换页高,查询到信息后,选取负载最低(算法确定)的server来分配任务.
(2)应用server主动到任务server接受任务进行处理
应用server处理完自己的任务后主动向任务server申请求任务。
(1)的方式可能会造成不公平。(2)的缺点是假设应用server处理不同的业务。那么可能任务server的编程逻辑会非常复杂。
当中任务server能够设置多台。彼此之间通过心跳联系------>满足 高可用性(fail over机制)。
如此一来(数据库,缓存,应用server,任务server)不论什么位置出现瓶颈就仅仅须要添加server好了。
为了高效的进行服务端的编程。我们也须要知道server性能四大杀手:
(1)数据拷贝 ----> 缓存来解决
(2)环境切换 -----> 理性创建线程:是否须要多线程。哪个好?单核server(採用状态机的编程效率最佳,类似OS中的进程切换)
多线程可以充分发挥多核server的性能,也要注意线程间切换的开销
(3)内存分配 ------> 内存池,降低向操作系统申请内存
(4)锁竞争 -------> 通过逻辑尽量降低锁的使用
以上的信息能够归纳为以下的这张图:
我们接下来介绍实际中的大型站点架构的演变过程,和我们上面的问题处理流程基本一致:
[Step1]web server与数据库分离
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
Apache/Nginx处理静态(前端server) JBoss/Tomat处理动态 (后端server)
[Step2]缓存处理
1.浏览器缓存降低对站点的訪问
2.前端server静态页面缓存降低对webserver的请求
3.动态中相对静态的部分使用ESI
4.本地缓存降低对数据库的查询
[Step3]web server集群+读写分离
DNS负载均衡
在DNSserver中,能够为多个不同的地址配置同一个名字,对于不同的客户机訪问同一个名字,得到不同的地址。
反向代理
使用代理server将请求发给内部server,让代理server将请求均匀转发给多台内部webserver之中的一个。从而达到负载均衡的目的。标准代理方式是客户使用代理訪问多个外部Webserver。而这样的代理方式是多个客户使用它訪问内部Webserver。因此也被称为反向代理模式。
基于NAT的负载均衡技术LVSF5硬件负载均衡
数据库负载均衡
[Step4]CDN、分布式缓存、分库分表
眼下流行分布式缓存方案:memcached、membase、redis等,基本上当前的NoSQL方案都能够用来做分布式缓存方案
[Step5]多数据中心+分布式存储与计算
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
技术点:分布式文件系统(DFS)
Map/Reduce:
文件太大,无法载入至内存。切割得到key-value数据,这个是map过程(多个机器完毕)
将其合并的过程称为reduce。Map-->combine-->reduce,这就是所谓的分布式计算。
大并发server架构 && 大型站点架构演变的更多相关文章
- .NET/ASP.NETMVC 大型站点架构设计—迁移Model元数据设置项(自定义元数据提供程序)
阅读目录: 1.需求背景介绍(Model元数据设置项应该与View绑定而非ViewModel) 1.1.确定问题域范围(可以使用DSL管理问题域前提是锁定领域模型) 2.迁移ViewModel设置到外 ...
- 大型站点图片server架构的演进
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/dinglang_2009/article/details/31450731 在主流的Web站点中,图 ...
- b2c项目基础架构分析(一)b2c 大型站点方案简述 已补充名词解释
我最近一直在找适合将来用于公司大型bs,b2b b2c的基础架构. 实际情况是要建立一个bs架构b2b.b2c的网站,当然还包括wap站点.手机app站点. 一.现有公司技术人员现状: 1.熟悉asp ...
- 设计高性能大并发WEB系统架构注意点
设计高性能大并发WEB系统架构注意点 第01:大型架构的演进之路第02(上):分布式缓存第02(下):分布式缓存第03:分布式消息队列第04:分布式数据存储第05:分布式服务框架第06:高性能系统架构 ...
- 转载:把你的精力专注在java,jvm原理,spring原理,mysql锁,事务,多线程,大并发,分布式架构,微服务,以及相关的项目管理等等,这样你的核心竞争力才会越来越高
https://developer.51cto.com/art/202001/608984.htm 把你的精力专注在java,jvm原理,spring原理,mysql锁,事务,多线程,大并发,分布式架 ...
- Java 架构师+高并发+性能优化+Spring boot大型分布式项目实战
视频课程内容包含: 高级 Java 架构师包含:Spring boot.Spring cloud.Dubbo.Redis.ActiveMQ.Nginx.Mycat.Spring.MongoDB.Zer ...
- 大型站点技术架构PDF阅读笔记(一):
1.数据库读写分离: 2.系统吞吐量和系统并发数以及系统响应时间之间的关系: 3.系统负载的概念: 4.反向代理的概念: 5.使用缓存来读取数据: 6.利用cookie来记录session: 利用co ...
- Drupal与大型网站架构(译)- Large-Scale Web Site Infrastructure and Drupal
Drupal与大型网站架构(译)- Large-Scale Web Site Infrastructure and Drupal Linuxjournal 网站经典文章翻译,原文地址: Large-S ...
- 从100PV到1亿级PV站点架构演变
假设你对项目管理.系统架构有兴趣,请加微信订阅号"softjg".增加这个PM.架构师的大家庭 一个站点就像一个人,存在一个从小到大的过程. 养一个站点和养一个人一样.不同一时候期 ...
随机推荐
- ZOJ 3781 Paint the Grid Reloaded
枚举,$BFS$,连通块缩点. 可以枚举一开始染哪个位置,然后逐层往外染色,看最多需要多少操作次数,也就是算最短距离.连通块缩点之后可以保证是一个黑白相间的图,且每条边的费用均为$1$,$BFS$即可 ...
- Python3 字典及三级菜单练习
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Author;Tsukasa list_1 = { '广州':{ '越秀区':{ '五羊石像','镇海 ...
- grunt-contrib-qunit安装过程中phantomjs安装报错问题解决
今天自己fork了一个github上别人写的一个关于grunt项目的一个小demo(https://github.com/cowboy/jquery-tiny-pubsub),主要是想学习下grunt ...
- BZOJ 2049 [Sdoi2008]Cave 洞穴勘测(动态树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2049 [题目大意] 要求支持树的断边和连边,以及连接查询 [题解] LCT练习题 [代 ...
- BZOJ 3399 [Usaco2009 Mar]Sand Castle城堡(贪心)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3399 [题目大意] 将一个集合调整成另一个集合中的数,把一个数+1需要消耗x,-1需要 ...
- 【最小割】【Dinic】Gym - 101128F - Landscaping
http://blog.csdn.net/lxy767087094/article/details/68942422 #include<cstdio> #include<cstrin ...
- [POJ3728]The merchant
题目大意: 给你一棵n个结点的带权树,有q组询问,问你从u到v的路径上最大值与最小值的差(最大值在最小值后面). 思路: 首先考虑路径上合并两个子路径u->t和t->v时的情况. 假设我们 ...
- django, form.errors处理
from.errors其实就是一个字典, 可以利用for error in form.errors.values, 或者for key, value in form.errors遍历得到其中的数据
- codevs 3641 上帝选人
3641 上帝选人 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 黄金 Gold 题目描述 Description 世界上的人都有智商IQ和情商EQ.我们用两个数字来表示人的 ...
- 简单理解SNAT回流中的概念:路由器怎么知道外网返回的数据是局域网中哪台主机的
内网到外网用的是NAT技术(地址封装)外网到内网用的是端口映射(PNAT)计算机的端口又65535(0-65534),你说的那些有名气的端口大多都是0-1023之间的你说的这个问题很简单,但首先你要懂 ...