解一元线性同余方程组(模数不互质)

结合看这俩blog讲得不错

http://46aae4d1e2371e4aa769798941cef698.devproxy.yunshipei.com/qq_27599517/article/details/50887445

上面这个对于理解为什么要用最小公倍数有帮助

http://blog.csdn.net/thearcticocean/article/details/49452859

思路就是不断两两合并,成一元线性同余方程,然后不断用扩欧求解

由于是最小的正整数解,而非非负整数解,所以最后答案如果是0,要加上模数的最小公倍数

#include<cstdio>
using namespace std;
int a[10],r[10],T,n;
void exgcd(int a,int b,int &d,int &x,int &y)
{
if(!b)
{
d=a;
x=1;
y=0;
}
else
{
exgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
int main(){
// freopen("c.in","r",stdin);
scanf("%d",&T);
for(int zu=1;zu<=T;++zu){
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
}
for(int i=1;i<=n;++i){
scanf("%d",&r[i]);
}
int a1=a[1],r1=r[1];
for(int i=2;i<=n;++i){
int a2=a[i],r2=r[i];
int d,x0,y0;
int c=r2-r1;
exgcd(a1,a2,d,x0,y0);
if(c%d){
r1=-1;
break;
}
int t=a2/d;
x0=(x0*(c/d)%t+t)%t;
r1=a1*x0+r1;
a1=a1*(a2/d);
}
printf("Case %d: %d\n",zu,r1==0 ? r1+a1 : r1);
}
return 0;
}

【数论】【扩展欧几里得】hdu3579 Hello Kiki的更多相关文章

  1. interesting Integers(数学暴力||数论扩展欧几里得)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwwAAAHwCAIAAACE0n9nAAAgAElEQVR4nOydfUBT1f/Hbw9202m0r8

  2. 数论 + 扩展欧几里得 - SGU 106. The equation

    The equation Problem's Link Mean: 给你7个数,a,b,c,x1,x2,y1,y2.求满足a*x+b*y=-c的解x满足x1<=x<=x2,y满足y1< ...

  3. [ZLXOI2015]殉国 数论 扩展欧几里得

    题目大意:已知a,b,c,求满足ax+by=c (x>=0,y>=0)的(x+y)最大值与最小值与解的个数. 直接exgcd,求出x,y分别为最小正整数的解,然后一算就出来啦 #inclu ...

  4. 数论--扩展欧几里得exgcd

    算法思想 我们想求得一组\(x,y\)使得 \(ax+by = \gcd(a,b)\) 根据 \(\gcd(a,b) = \gcd(b,a\bmod b)\) 如果我们现在有\(x',y'\) 使得 ...

  5. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  6. 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions

    题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...

  7. JZYZOJ1371 青蛙的约会 扩展欧几里得 GTMD数论

    http://172.20.6.3/Problem_Show.asp?id=1371 题意是两个青蛙朝同一个方向跳 http://www.cnblogs.com/jackge/archive/2013 ...

  8. 【bzoj2242】: [SDOI2011]计算器 数论-快速幂-扩展欧几里得-BSGS

    [bzoj2242]: [SDOI2011]计算器 1.快速幂 2.扩展欧几里得(费马小定理) 3.BSGS /* http://www.cnblogs.com/karl07/ */ #include ...

  9. 【扩展欧几里得】BAPC2014 I Interesting Integers (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  10. [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)

    最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...

随机推荐

  1. cnn 卷积神经网络 人脸识别

    卷积网络博大精深,不同的网络模型,跑出来的结果是不一样,在不知道使用什么网络的情况下跑自己的数据集时,我建议最好去参考基于cnn的手写数字识别网络构建,在其基础上进行改进,对于一般测试数据集有很大的帮 ...

  2. 20151024_001_C#基础知识(静态与非静态的区别,值类型和引用类型,堆和栈的区别,字符串的不可变性,命名空间)

    1:我们把这些具有相同属性和相同方法的对象进行进一步的封装,抽象出来类这个概念. 类就是个模子,确定了对象应该具有的属性和方法. 对象是根据类创建出来的. 2:类:语法 [public] class ...

  3. setTimeOut和闭包

    掘金上看到一个setTimeout与循环闭包的思考题.拿过来看了下,一方面了解settimeout的运行机制,还有就是js闭包的特性.关于闭包,有如下解释: 在这里写一点我对闭包的理解.理解闭包的关键 ...

  4. linux 命令行远程登录 后台运行命令的方法

    linux 命令行远程登录 后台运行命令的方法 http://blog.csdn.net/isuker/article/details/55061595 Linux 技巧:让进程在后台可靠运行的几种方 ...

  5. python一步高级编程

    1.==,is的使用 总结 ·is是比较两个引用是否指向了同一个对象(引用比较). ·==是比较两个对象是否相等. 2.深拷贝.浅拷贝 1.浅拷贝 浅拷贝是对于一个对象的顶层拷贝 通俗的理解是:拷贝了 ...

  6. JS如何获取Input的name或者ID?

    <input name="music" type="image" id="music" onclick="loadmusic ...

  7. centos安装VNC的方法

    https://help.aliyun.com/knowledge_detail/6698160.html(阿里云官方文档,但是官方文档有些地方是错的,我更正了下) ----------------- ...

  8. 三:基于Storm的实时处理大数据的平台架构设计

    一:元数据管理器==>元数据管理器是系统平台的“大脑”,在任务调度中有着重要的作用[1]什么是元数据?--->中介数据,用于描述数据属性的数据.--->具体类型:描述数据结构,数据的 ...

  9. hdu5735

    很美妙的一题 官方题解 http://www.cnblogs.com/duoxiao/p/5777632.html 感觉有meet in middle的思想 #include<bits/stdc ...

  10. AC日记——餐巾计划问题 洛谷 P1084

    餐巾计划问题 思路: 氧气优化水过: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 4005 #define ...