解一元线性同余方程组(模数不互质)

结合看这俩blog讲得不错

http://46aae4d1e2371e4aa769798941cef698.devproxy.yunshipei.com/qq_27599517/article/details/50887445

上面这个对于理解为什么要用最小公倍数有帮助

http://blog.csdn.net/thearcticocean/article/details/49452859

思路就是不断两两合并,成一元线性同余方程,然后不断用扩欧求解

由于是最小的正整数解,而非非负整数解,所以最后答案如果是0,要加上模数的最小公倍数

#include<cstdio>
using namespace std;
int a[10],r[10],T,n;
void exgcd(int a,int b,int &d,int &x,int &y)
{
if(!b)
{
d=a;
x=1;
y=0;
}
else
{
exgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
int main(){
// freopen("c.in","r",stdin);
scanf("%d",&T);
for(int zu=1;zu<=T;++zu){
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
}
for(int i=1;i<=n;++i){
scanf("%d",&r[i]);
}
int a1=a[1],r1=r[1];
for(int i=2;i<=n;++i){
int a2=a[i],r2=r[i];
int d,x0,y0;
int c=r2-r1;
exgcd(a1,a2,d,x0,y0);
if(c%d){
r1=-1;
break;
}
int t=a2/d;
x0=(x0*(c/d)%t+t)%t;
r1=a1*x0+r1;
a1=a1*(a2/d);
}
printf("Case %d: %d\n",zu,r1==0 ? r1+a1 : r1);
}
return 0;
}

【数论】【扩展欧几里得】hdu3579 Hello Kiki的更多相关文章

  1. interesting Integers(数学暴力||数论扩展欧几里得)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwwAAAHwCAIAAACE0n9nAAAgAElEQVR4nOydfUBT1f/Hbw9202m0r8

  2. 数论 + 扩展欧几里得 - SGU 106. The equation

    The equation Problem's Link Mean: 给你7个数,a,b,c,x1,x2,y1,y2.求满足a*x+b*y=-c的解x满足x1<=x<=x2,y满足y1< ...

  3. [ZLXOI2015]殉国 数论 扩展欧几里得

    题目大意:已知a,b,c,求满足ax+by=c (x>=0,y>=0)的(x+y)最大值与最小值与解的个数. 直接exgcd,求出x,y分别为最小正整数的解,然后一算就出来啦 #inclu ...

  4. 数论--扩展欧几里得exgcd

    算法思想 我们想求得一组\(x,y\)使得 \(ax+by = \gcd(a,b)\) 根据 \(\gcd(a,b) = \gcd(b,a\bmod b)\) 如果我们现在有\(x',y'\) 使得 ...

  5. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  6. 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions

    题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...

  7. JZYZOJ1371 青蛙的约会 扩展欧几里得 GTMD数论

    http://172.20.6.3/Problem_Show.asp?id=1371 题意是两个青蛙朝同一个方向跳 http://www.cnblogs.com/jackge/archive/2013 ...

  8. 【bzoj2242】: [SDOI2011]计算器 数论-快速幂-扩展欧几里得-BSGS

    [bzoj2242]: [SDOI2011]计算器 1.快速幂 2.扩展欧几里得(费马小定理) 3.BSGS /* http://www.cnblogs.com/karl07/ */ #include ...

  9. 【扩展欧几里得】BAPC2014 I Interesting Integers (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  10. [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)

    最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...

随机推荐

  1. js_跑马灯

    跑马灯?刚听到这个词的时候,脑袋第一个想到的是跑马?嗯?就是香港的那种跑马场.懂?其次就是霓虹灯了,一闪一闪的多好看. 霓虹灯?哦,那是城市的杰作,记忆中是.开往城市边缘开,把车窗都摇下来,用速度换一 ...

  2. hdu 1556(线段树之扫描线)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1556 Color the ball Time Limit: 9000/3000 MS (Java/Ot ...

  3. Part2-HttpClient官方教程-Chapter2-连接管理

    2.1 连接持久性 建立从一个主机到另一个主机的连接的过程相当复杂,并且涉及两个端点之间的多个分组交换,这可能相当耗时.连接握手的开销可能很大,特别是对于小型的HTTP消息. 如果可以重新使用开放连接 ...

  4. perl6中的hash定义(1)

    ,,,); say %hash; , b => ); say %hash2; my %hash3 = (:name('root'), :host('localost')); say %hash3 ...

  5. Object的公用方法们

    如图所示,Object一共有10种方法: 下面详细描述: 1.public Object() 方法,默认构造函数方法,当新建一个Object对象的时候,调用这个方法向堆区申请一片内存: 2.priva ...

  6. monkey测试===monkeyrunner测试教程(2)

    我先引入一段代码: #test.py from com.android.monkeyrunner import MonkeyRunner as mr device=mr.waitForConnecti ...

  7. C基础 mariadb处理简单案例

    引言 MariaDB 是一款灰常不错开源数据库. 这里直接用它来解决业务问题. 业务需求: 现在数据库中表示按照天分表的. 突然我们需要按照月来处理数据. 例如输入一个玩家id, 查找这个玩家这个月内 ...

  8. memcached结合php以及memcache共享session

    //安装php的memcache扩展 一.使用php自带的pecl安装程序 [root@localhost src]# /usr/local/php/bin/pecl install memcache ...

  9. 各种好用的代码生成器(C#)

    各种好用的代码生成器(C#) 1:CodeSmith 一款人气很旺国外的基于模板的dotnet代码生成器 官方网站:http://www.codesmithtools.com 官方论坛:http:// ...

  10. Redis -- 数据类型小结

    redis key 的命名规则: 对象类型:对象id:对象属性  (hset car:1: price 500.hset car:1: name:tom) 一.redis 数据类型: 1. 字符串类型 ...