原文地址

首先阶乘的一个常识要知道就是25!的末尾6位全是0;

前言:

《编程之美》这本书,爱不释手!

问题描述:

  1. 给定一个整数N,那么N的阶乘N!末尾有多少个0呢?例如:N=10,N!=362800,N!的末尾有两个0;
  2. 求N!的二进制表示中最低位1的位置。

问题1的求解:

分析:

解法一:

首先,最直接的算法当然是直接求出来N!然后看末尾有几个0就行了。但这里存在两个问题:

(1)不管使用long或者double一定会产生溢出。

(2)效率低下。

对于问题(1),我们可以采用字符串存储的办法解决,但问题(2)是由本身算法决定的,所以只能采用其他的算法。


到底有没有更好的算法呢?我们来分析,N!能产生0的质数组合只能是2 *
5,也就是说当对N!进行质数分解之后,N!末尾0的个位M取决于2的个数X和5的个数Y的最小值,即M =
min(X,Y)。又因为能被2整除的数出现的频率比能被5整除的数高得多,且出现一个5的时,最少会同时出现一个2,所以M =
Y。即得出Y的值就可以得到N!末尾0的个数。

计算Y,最直接的方法,就是计算机1…N的因式分解中5的个数,然后求和。

代码如下:

static long GetZeroNum(long n)
{
long num = ;
int i,j;
for(i=; i<=n; i++)
{
j=i;
while(j % == )
{
num++;
j/=;
}
}
return num;
}

解法二:

那 么还有没有更简单点的方法呢?我们想,Y还能怎么样得到?举个例子 25的阶乘中,总共有6个五,其中5,10,15,20,各贡献一个,25贡献两个,也可以说成,5,10,15,20,25各贡献一个,25又额外贡献 一个,即5的倍数各贡献一个5,25的倍数各贡献一个5,即Y=[25/5] + [25/25]。同理,125中,5的倍数各贡献一个5,25的倍数各贡献一个5,125的倍数也各贡献一个5,所以Y=[125/5] + [125/25] + [125/125],所以可得公式:

Y = [N/5] + [N/52] + [N/53] + …

代码如下:

static long GetZeroNum(long n)
{
long num = ;
while(n != )
{
num=num+n/;
n=n/;
}
return num;
}

问题2的求解:

分析:

首先我们来分析一个二进制数乘以2和除以2的过程和结果是怎么样。

一个二进制数乘以2就是把将此二进制数向左移一位,末位补零。除以2时,则要判断末位是否为0,若为0,向右移一位,若不能为0,则不能被2整除。

所以,其实本问题其实是求N!含有多少个2,最低位1的位置等于N!中含有2的个数加1。

代码如下:

//计算n的阶乘的二进制中最低位1的位置,
//返回值表示倒数第几位;
static long LowestOnew(long n)
{
long num=;
while(n!=)
{
num=num+n/;
n=n/;
}
return num+;
}

ACM_数论_阶乘N!的末尾有几个零 和 末尾有多少个 1 nyoj 954的更多相关文章

  1. 哪几个数的阶乘末尾有n个零?

    题目:哪几个数的阶乘末尾有n个0?其中n是一个正整数,从键盘输入. int main( void ) /* name: zerotail.cpp */ { int num, n, c, m; cout ...

  2. BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演

    BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...

  3. ALGO-157_蓝桥杯_算法训练_阶乘末尾(高精度)

    问题描述 给定n和len,输出n!末尾len位. 输入格式 一行两个正整数n和len. 输出格式 一行一个字符串,表示答案.长度不足用前置零补全. 样例输入 样例输出 数据规模和约定 n<=, ...

  4. BASIC-30_蓝桥杯_阶乘计算

    题目: 问题描述 输入一个正整数n,输出n!的值. 其中n!=1*2*3*…*n. 算法描述 n!可能很大,而计算机能表示的整数范围有限,需要使用高精度计算的方法.使用一个数组A来表示一个大整数a,A ...

  5. 找出n的阶乘末尾有几个零

    原理:因为10由2*5组成,而构成2的因数比5多 所以最终转换成求5的个数 int getNumber(int n) { int count = 0; while(n) { n = n/5; coun ...

  6. [bzoj4659\2694]Lcm_数论_莫比乌斯反演

    Lcm bzoj-4659 bzoj-2694 题目大意:给出A,B,考虑所有满足l<=a<=A,l<=b<=B,且不存在n>1使得n^2同时整除a和b的有序数对(a,b ...

  7. java将数组中的零放到末尾

    package com.shb.java; /** * 将数组中的0放到数组的后边,然后原来的非零数的顺序不改变 * @author BIN * */ public class Demo2{ publ ...

  8. 算法基础_递归_给定m个A,n个B,一共有多少种排列

    问题描述: 给定m个A,n个B,一共有多少种排列 解题源代码: /** * 给定m个A,n个B,问一共有多少种排列 * @author Administrator * */ public class ...

  9. Django学习路22_empty为空,forloop.counter 从1计数,.counter0 从0计数 .revcounter最后末尾数字是1,.revcounter0 倒序,末尾为 0

    当查找的数据不存在,返回为 空时 在 html 中使用 {%empty%} 语句 进行显示 def getstudents(request): students = Student.objects.a ...

随机推荐

  1. AWR Report 关键参数详细分析

    WORKLOAD REPOSITORY report for DB Name DB Id Instance Inst num Startup Time Release RAC CALLDB 12510 ...

  2. iOS: 适配启动图和图标

    如何设置App的启动图,也就是Launch Image? Step1 1.点击Assets.xcassets 进入图片管理,然后右击,弹出"App Icons & Launch Im ...

  3. libev客户端

    #include <ev.h> #include <stdio.h> #include <netinet/in.h> #include <stdlib.h&g ...

  4. Java开发岗位面试题归类---怎么好好的准备面试,也算是发展学习方向

    转载:http://blog.csdn.net/qq_27093465/article/details/52181860 一.Java基础 1. String类为什么是final的. 自己找的参考答案 ...

  5. ajax请求接口数据

    var api = 'http://192.168.68.208:666/ajax/api.ashx'; // api += 'action=/api/blackhistory/list&ke ...

  6. Android学习路线(二十一)运用Fragment构建动态UI——创建一个Fragment

    你能够把fragment看成是activity的模块化部分.它拥有自己的生命周期,接受它自己的输入事件,你能够在activity执行时加入或者删除它(有点像是一个"子activity&quo ...

  7. Windows进程通信 -- 共享内存

    享内存的方式原理就是将一份物理内存映射到不同进程各自的虚拟地址空间上,这样每个进程都可以读取同一份数据,从而实现进程通信.因为是通过内存操作实现通信,因此是一种最高效的数据交换方法. 共享内存在 Wi ...

  8. MyBatis SpringBoot2.0 数据库读写分离

    1.自定义DataSource import org.springframework.jdbc.datasource.lookup.AbstractRoutingDataSource; /** * @ ...

  9. Https与Http,SSL,DevOps, 静态代码分析工具,RFID, SSH, 非对称加密算法(使用最广泛的一种是RSA), 数字签名, 数字证书

    在URL前加https://前缀表明是用SSL加密的. 你的电脑与服务器之间收发的信息传输将更加安全. Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定. http和h ...

  10. Python-文件修改器

    #-*- coding: utf-8 -*- import os import sys import glob from PyQt4.QtGui import * from PyQt4.QtCore ...