原文地址

首先阶乘的一个常识要知道就是25!的末尾6位全是0;

前言:

《编程之美》这本书,爱不释手!

问题描述:

  1. 给定一个整数N,那么N的阶乘N!末尾有多少个0呢?例如:N=10,N!=362800,N!的末尾有两个0;
  2. 求N!的二进制表示中最低位1的位置。

问题1的求解:

分析:

解法一:

首先,最直接的算法当然是直接求出来N!然后看末尾有几个0就行了。但这里存在两个问题:

(1)不管使用long或者double一定会产生溢出。

(2)效率低下。

对于问题(1),我们可以采用字符串存储的办法解决,但问题(2)是由本身算法决定的,所以只能采用其他的算法。


到底有没有更好的算法呢?我们来分析,N!能产生0的质数组合只能是2 *
5,也就是说当对N!进行质数分解之后,N!末尾0的个位M取决于2的个数X和5的个数Y的最小值,即M =
min(X,Y)。又因为能被2整除的数出现的频率比能被5整除的数高得多,且出现一个5的时,最少会同时出现一个2,所以M =
Y。即得出Y的值就可以得到N!末尾0的个数。

计算Y,最直接的方法,就是计算机1…N的因式分解中5的个数,然后求和。

代码如下:

static long GetZeroNum(long n)
{
long num = ;
int i,j;
for(i=; i<=n; i++)
{
j=i;
while(j % == )
{
num++;
j/=;
}
}
return num;
}

解法二:

那 么还有没有更简单点的方法呢?我们想,Y还能怎么样得到?举个例子 25的阶乘中,总共有6个五,其中5,10,15,20,各贡献一个,25贡献两个,也可以说成,5,10,15,20,25各贡献一个,25又额外贡献 一个,即5的倍数各贡献一个5,25的倍数各贡献一个5,即Y=[25/5] + [25/25]。同理,125中,5的倍数各贡献一个5,25的倍数各贡献一个5,125的倍数也各贡献一个5,所以Y=[125/5] + [125/25] + [125/125],所以可得公式:

Y = [N/5] + [N/52] + [N/53] + …

代码如下:

static long GetZeroNum(long n)
{
long num = ;
while(n != )
{
num=num+n/;
n=n/;
}
return num;
}

问题2的求解:

分析:

首先我们来分析一个二进制数乘以2和除以2的过程和结果是怎么样。

一个二进制数乘以2就是把将此二进制数向左移一位,末位补零。除以2时,则要判断末位是否为0,若为0,向右移一位,若不能为0,则不能被2整除。

所以,其实本问题其实是求N!含有多少个2,最低位1的位置等于N!中含有2的个数加1。

代码如下:

//计算n的阶乘的二进制中最低位1的位置,
//返回值表示倒数第几位;
static long LowestOnew(long n)
{
long num=;
while(n!=)
{
num=num+n/;
n=n/;
}
return num+;
}

ACM_数论_阶乘N!的末尾有几个零 和 末尾有多少个 1 nyoj 954的更多相关文章

  1. 哪几个数的阶乘末尾有n个零?

    题目:哪几个数的阶乘末尾有n个0?其中n是一个正整数,从键盘输入. int main( void ) /* name: zerotail.cpp */ { int num, n, c, m; cout ...

  2. BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演

    BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...

  3. ALGO-157_蓝桥杯_算法训练_阶乘末尾(高精度)

    问题描述 给定n和len,输出n!末尾len位. 输入格式 一行两个正整数n和len. 输出格式 一行一个字符串,表示答案.长度不足用前置零补全. 样例输入 样例输出 数据规模和约定 n<=, ...

  4. BASIC-30_蓝桥杯_阶乘计算

    题目: 问题描述 输入一个正整数n,输出n!的值. 其中n!=1*2*3*…*n. 算法描述 n!可能很大,而计算机能表示的整数范围有限,需要使用高精度计算的方法.使用一个数组A来表示一个大整数a,A ...

  5. 找出n的阶乘末尾有几个零

    原理:因为10由2*5组成,而构成2的因数比5多 所以最终转换成求5的个数 int getNumber(int n) { int count = 0; while(n) { n = n/5; coun ...

  6. [bzoj4659\2694]Lcm_数论_莫比乌斯反演

    Lcm bzoj-4659 bzoj-2694 题目大意:给出A,B,考虑所有满足l<=a<=A,l<=b<=B,且不存在n>1使得n^2同时整除a和b的有序数对(a,b ...

  7. java将数组中的零放到末尾

    package com.shb.java; /** * 将数组中的0放到数组的后边,然后原来的非零数的顺序不改变 * @author BIN * */ public class Demo2{ publ ...

  8. 算法基础_递归_给定m个A,n个B,一共有多少种排列

    问题描述: 给定m个A,n个B,一共有多少种排列 解题源代码: /** * 给定m个A,n个B,问一共有多少种排列 * @author Administrator * */ public class ...

  9. Django学习路22_empty为空,forloop.counter 从1计数,.counter0 从0计数 .revcounter最后末尾数字是1,.revcounter0 倒序,末尾为 0

    当查找的数据不存在,返回为 空时 在 html 中使用 {%empty%} 语句 进行显示 def getstudents(request): students = Student.objects.a ...

随机推荐

  1. easyui-combobox绑定回车事件相关

    去掉combobox回车内容不匹配清空输入项     问题描述:easyui的combobox插件,输入的内容如果和选项不匹配时,按下回车会导致输入的内容被清空. 解决办法:要解决回车时,combob ...

  2. 动态jdk启动项目

    昨天遇到,服务器安装jdk1.7,但是springboot项目用jdk1.8编译的,所以需要指定jdk版本启动: nohup /root/jdk1.8.0_11/bin/java -jar /root ...

  3. linux面试题目--1

    Linux面试题目 填空题1. 在Linux系统中,以 (文件)方式访问设备 .2. Linux内核引导时,从文件/etc/fstab 中读取要加载的文件系统.3. Linux文件系统中每个文件用i节 ...

  4. 关于TagHelper的那些事情——Microsoft.AspNet.Mvc.TagHelpers介绍

    写在开始 在上一篇文章中,简单介绍了什么是TagHelper,怎么使用它.接下来我会简单介绍一下微软随着ASP.NET5一起发布的TagHelpers.它们分别是: AnchorTagHelper C ...

  5. iOS:第三方框架MJPhotoBrowser图片浏览器的使用

    介绍:MJPhotoBrowser这个第三方库是MJ老师封装的一套用来浏览图片的浏览器,可是是本地图片.网络图片.gif图片等,其也依赖了SDWebImage.SVProgressHUD.YLGIFI ...

  6. Android Studio断点调试

    Android Studio断点调试 Android Studio包含一个debugger程序,可以帮助你在模拟器和真机上调试你的android应用.通过Android Studio的debugger ...

  7. window环境下备份与恢复(实际操作)

    C:\Documents and Settings\xuzhengzhu>sqlplus /nolog SQL*Plus: Release 10.2.0.1.0 - Production on ...

  8. Git系列四之在本地服务器搭建gitlab仓库管理

    1.Git仓库管理 现在本地已经创建了git仓库,又在gitlab上创建了一个git仓库,并且让这两个仓库进行远程同步,这样gitlab仓库既可以备份也可以与他人协作管理远程仓库以及根据需要推送或拉取 ...

  9. hue启用ldap

    [desktop] [[auth]] …… …… backend=desktop.auth.backend.LdapBackend .….. http://gethue.com/ldap-or-pam ...

  10. ThreadLocal的简单应用

    概括起来说,对于多线程资源共享的问题,同步机制采用了“以时间换空间”的方式,而ThreadLocal采用了“以空间换时间”的方式.前者仅提供一份变量,让不同的线程排队访问,而后者为每一个线程都提供了一 ...