Description

A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参加比赛。

与经典的取石子游戏相比,A公司举办的这次比赛的取石子游戏规则复杂了很多: 
  总共有N堆石子依次排成一行,第i堆石子有 ai个石子。 
  开始若干堆石子已被 A公司故意拿走。

  然后两个玩家轮流来取石子,每次每个玩家可以取走一堆中的所有石子,但有一个限制条件:一个玩家若要取走一堆石子,则与这堆石子相邻的某堆石子已被取走(之前被某个玩家取走或开始被A公司故意拿走)。注意:第 1堆石子只与第 2堆石子相邻,第N堆石子只与第N-1堆石子相邻,其余的第 i堆石子与第i-1堆和第 i+1 堆石子相邻。

  所有石子都被取走时,游戏结束。谁最后取得的总石子数最多,谁就获得了这场游戏的胜利。

作为这次比赛的参赛者之一,绝顶聪明的你,想知道对于任何一场比赛,如果先手者和后手者都使用最优的策略,最后先手者和后手者分别能够取得的总石子数分别是多少。

Input

第一行是一个正整数N,表示有多少堆石子。输入文件第二行是用空格隔开的N个非负整数a1, a2, …, aN,其中ai表示第i堆石子有多少个石子,

ai  = 0表示第i堆石子开始被A公司故意拿走。输入的数据保证0≤ai≤100,000,000,并且至少有一个i使得ai = 0。30%的数据满足2≤N≤100,100%的数据满足2≤N≤1,000,000。

Output

仅包含一行,为两个整数,分别表示都使用最优策略时,最后先手者和后手者各自能够取得的总石子数,并且两个整数间用一个空格隔开。

Sample Input

8
1 2 0 3 7 4 0 9

Sample Output

17 9
样例解释:两个玩家都使用最优策略时取走石子的顺序依次为9, 2, 1, 4, 7, 3,因此先手者取得9 + 1 + 7 = 17个石子,后手者取得2 + 4 + 3 = 9个石子。

正解:博弈论+链表。

这道题的难点在于分析博弈者的心理。

双方的目标就是使自己-别人的石子数差最大化。

可以看出,石子堆分为两个栈和若干个双端队列。

如果所有元素在每一个容器中都是递减的,那么先手和后手显然可以每次都取最大元素来保证自己利益的最大化。

但是现在不是这样,不过我们可以把这个数列化简一下。

如果序列最左端是$A,B...$或最右端是$...B,A$,且$B\leq A$。

那么双方在有其它方案时都不会愿意先取走$B$,故这种情况可以留到博弈的最后。

由于石子数是确定的,可以直接推出最后谁取到了$A$,算出相应差值。

由于可以留到游戏的最后,此时删除这两堆并不影响两人之前的决策。

如果有一段 $...A,B,C...$且满足$A\leq B,C\leq B$。

那么我们直接把 ABC 替换成一个 A+C-B 即可。

我们可以这样想:选$A,B,C$的时候是因为没有更好的决策而被迫选的。事实上当全场没有大于$A+C-B$的石子堆可以直接取时,才会考虑取$A,C$中的一个。那么不管第一次取$A,B,C$中的元素是从哪边,后手一定也没有别的更好的选择,既然先手选$A,C$都已是被迫了,所以后手选$B$一定不会是差的。留下来的一个也一定是当前不差的选择。故先手一定取走$A+C$,后手取走$B$。从对分数差的贡献来看,我们可以直接把$A,B,C$代替成$A+C-B$。

我们用链表实现化简,就能把石子变成递减的情况,然后直接排序取石子就行了。

 #include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define N (1000005) using namespace std; int b[N],l[N],r[N],n,h,t,ok,cnt,tmp;
ll a[N],c[N],sum,dif; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void del(RG int x){
RG int L=l[x],R=r[x];
if (L) r[L]=R,l[x]=;
if (R<=n) l[R]=L,r[x]=n+;
return;
} int main(){
#ifndef ONLINE_JUDGE
freopen("stone.in","r",stdin);
freopen("stone.out","w",stdout);
#endif
n=gi(),h=,t=n,ok=;
for (RG int i=;i<=n;++i)
a[i]=gi(),sum+=a[i],b[i]=!a[i],cnt^=!b[i],l[i]=i-,r[i]=i+;
while (ok && h<t){
ok=;
while (h<t && !b[h] && !b[r[h]] && a[h]>=a[r[h]]){
cnt?dif+=a[h]-a[r[h]]:dif+=a[r[h]]-a[h];
tmp=r[r[h]],del(r[h]),del(h),h=tmp,ok=;
}
while (h<t && !b[t] && !b[l[t]] && a[t]>=a[l[t]]){
cnt?dif+=a[t]-a[l[t]]:dif+=a[l[t]]-a[t];
tmp=l[l[t]],del(l[t]),del(t),t=tmp,ok=;
}
for (RG int i=h;i<=t;i=r[i]){
if (b[i] || !l[i] || r[i]==n+ || b[l[i]] || b[r[i]]) continue;
if (a[i]<a[l[i]] || a[i]<a[r[i]]) continue;
if (h==l[i]) h=i; if (t==r[i]) t=i;
a[i]=a[l[i]]+a[r[i]]-a[i],del(l[i]),del(r[i]),ok=;
}
}
cnt=; for (RG int i=h;i<=t;i=r[i]) if (!b[i]) c[++cnt]=a[i];
sort(c+,c+cnt+),reverse(c+,c+cnt+);
for (RG int i=;i<=cnt;++i) i&?dif+=c[i]:dif-=c[i];
printf("%lld %lld\n",(sum+dif)>>,(sum-dif)>>); return ;
}

bzoj2000 [Hnoi2010]stone 取石头游戏的更多相关文章

  1. [HNOI2010]STONE取石头游戏

    题目描述 A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参加比赛. 与经典的取石子游戏相比,A公司举办 ...

  2. BZOJ.2000.[HNOI2010]stone取石头游戏(博弈)

    BZOJ 洛谷 低估这道神题了_(:з」∠)_ MilkyWay好狠啊(小声) \(Description\) 有一些数字,被分成若干双端队列(从两边都可以取)和最多两个栈(只能从某一边一个一个取)的 ...

  3. 【BZOJ2000】[HNOI2000]取石头游戏(贪心,博弈论)

    [BZOJ2000][HNOI2000]取石头游戏(贪心,博弈论) 题面 BZOJ 洛谷 题解 这题好神仙啊,窝不会QaQ. 假装一下只有三个元素\(a_{i-1},a_i,a_{i+1}\),并且满 ...

  4. [luogu] P3210 [HNOI2010]取石头游戏(贪心)

    P3210 [HNOI2010]取石头游戏 题目描述 A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参 ...

  5. luogu P3210 [HNOI2010]取石头游戏

    传送门 不会结论做个鬼系列 题意其实是在头尾(最多)两个栈以及中间一些双端队列依次取数,然后每个人都要最大化自己的价值 有一个结论,如果一段序列中,出现了三个相邻位置\(A,B,C\),满足\(A\l ...

  6. 题解 洛谷 P3210 【[HNOI2010]取石头游戏】

    考虑到先手和后手都使用最优策略,所以可以像对抗搜索一样,设 \(val\) 为先手收益减去后手收益的值.那么先手想让 \(val\) 尽可能大,后手想让 \(val\) 尽可能小. 继续分析题目性质, ...

  7. HDU 1729 Stone Game 石头游戏 (Nim, sg函数)

    题意: 有n个盒子,每个盒子可以放一定量的石头,盒子中可能已经有了部分石头.假设石头无限,每次可以往任意一个盒子中放石头,可以加的数量不得超过该盒中已有石头数量的平方k^2,即至少放1个,至多放k^2 ...

  8. Games:取石子游戏(POJ 1067)

    取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37662   Accepted: 12594 Descripti ...

  9. CH 3401 - 石头游戏 - [矩阵快速幂加速递推]

    题目链接:传送门 描述石头游戏在一个 $n$ 行 $m$ 列 ($1 \le n,m \le 8$) 的网格上进行,每个格子对应一种操作序列,操作序列至多有 $10$ 种,分别用 $0 \sim 9$ ...

随机推荐

  1. HDU 5696 ——区间的价值——————【线段树、快排思想】

    区间的价值 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  2. WPF基础控件

    1.所有基础控件结束(英文) http://www.dotnetperls.com/tooltip-wpf 2.wpf- DataGrid 常用属性和事件 3.

  3. 第三章 使用java实现面向对象 多态

    第三章 多态 一.编写父子类 1.多态是具有表现多种型生态的能力的特征,同一个实现接口,使用不同的实例而执行不同的操作 2.一个引用类型,使用不同的实例而执行不同操作.(父类引用子类对象) 使用多态的 ...

  4. C#实现Javascript的Splice方法

    最近开始学习Javascript语言,看到splice方法,以下引用其说明:该方法是一个通用删除和插入元素的方法,它可以在数组指定的位置开始删除或插入元素.其包括3个参数:第一个参数指定插入的起始位置 ...

  5. 在 Azure WebApps 中运行64位 Asp.net Core 应用

    作为微软下一代的开源的跨平台的开发框架, Asp.net core 正在吸引越来越多的开发者基于其构建现代 web 应用. 目前, Azure App Service 也实现了对 asp.net co ...

  6. maven <repositories>标签,<pluginRepositories>标签

    在不用Maven的时候,比如说以前我们用Ant构建项目,在项目目录下,往往会看到一个名为/lib的子目录,那里存放着各类第三方依赖jar文件,如log4j.jar,junit.jar等等.每建立一个项 ...

  7. poj 1700 Crossing River 过河问题。贪心

    Crossing River Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9887   Accepted: 3737 De ...

  8. 使用powershell 执行脚本,windows默认不允许任何脚本运行

    使用如下命令让PowerShell运行在无限制的环境之下: Set-ExecutionPolicy Unrestricted

  9. 基于Maven的Spring + Spring MVC + Mybatis的环境搭建

    基于Maven的Spring + Spring MVC + Mybatis的环境搭建项目开发,先将环境先搭建起来.上次做了一个Spring + Spring MVC + Mybatis + Log4J ...

  10. 排序算法Nb三人组-归并排序

    归并排序只能对两个已经有序的列表进行合并排序,所以要我们自己创建出两个有序列表.最后在进行合并. def merge2list(li1, li2): li = [] i = 0 j = 0 while ...