【bzoj3142】[Hnoi2013]数列 数学
题目描述
求满足 $1\le a_i\le n\ ,\ 1\le a_{i+1}-a_i\le m$ 的序列 $a_1...a_k$ 的个数模 $p$ 的值。
输入
只有一行用空格隔开的四个数:N、K、M、P。对P的说明参见后面“输出格式”中对P的解释。
输入保证20%的数据M,N,K,P≤20000,保证100%的数据M,K,P≤109,N≤1018 。
输出
仅包含一个数,表示这K天的股价的可能种数对于P的模值。
样例输入
7 3 2 997
样例输出
16
题解
数学
设第 $i$ 天与第 $i+1$ 天的差为 $a_i$,那么显然答案为:
$\sum\limits_{a_1=1}^m\sum\limits_{a_2=1}^m...\sum\limits_{a_{k-1}=1}^m(n-a_1-a_2-...-a_{k-1})$
考虑这个式子是什么:
由于每个数有 $m$ 种取值,因此相当于有 $m^{k-1}$ 次加和, $n$ 的那一部分答案为 $n·m^{k-1}$ 。
思考后面的部分$\sum\limits_{a_1=1}^m\sum\limits_{a_2=1}^m...\sum\limits_{a_{k-1}=1}^m(a_1+a_2+...+a_{k-1})$,考虑每个数的贡献:该数每一个取值对应着 $m^{k-2}$ 次加和,所以每个数的贡献为 $m^{k-2}·\sum\limits_{i=1}^mi=\frac{(m+1)m^{k-1}}2$,因此总和为 $\frac{(k-1)(m+1)m^{k-1}}2$。
最终答案即为 $n·m^{k-1}-\frac{(k-1)(m+1)m^{k-1}}2=\frac{m^{k-1}(2n-(k-1)(m+1))}2$,使用快速幂计算即可。
注意这个除2比较难以处理,考虑将模数*2变为偶数,那么原答案的奇偶性不变,可以直接除2。
千万要注意取模的问题!
#include <cstdio>
typedef long long ll;
ll n , k , m , p;
ll pow(ll x , ll y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % p;
x = x * x % p , y >>= 1;
}
return ans;
}
int main()
{
scanf("%lld%lld%lld%lld" , &n , &k , &m , &p) , p <<= 1;
printf("%lld\n" , (pow(m , k - 1) * (2 * n % p - (m + 1) * (k - 1) % p) / 2 % p + p) % (p >> 1));
return 0;
}
【bzoj3142】[Hnoi2013]数列 数学的更多相关文章
- [BZOJ3142][HNOI2013]数列(组合数学)
3142: [Hnoi2013]数列 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1721 Solved: 854[Submit][Status][ ...
- BZOJ3142 [Hnoi2013]数列
Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...
- bzoj千题计划293:bzoj3142: [Hnoi2013]数列
http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...
- BZOJ3142 HNOI2013数列(组合数学)
考虑差分序列.每个差分序列的贡献是n-差分序列的和,即枚举首项.将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和.显然每一个数出现次数是相同的,所以c ...
- BZOJ3142 [Hnoi2013]数列 【组合数学】
题目链接 BZOJ3142 题解 题意:选一个正整数和\(K - 1\)个\([1,M]\)中的数,使得总和小于等于\(N\),求方案数模\(P\) 题目中\(K(M - 1) < N\)的限制 ...
- [BZOJ3142][HNOI2013]数列(组合)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...
- bzoj3142[Hnoi2013]数列 组合
Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
- 【BZOJ3142】[HNOI2013]数列
[BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...
随机推荐
- 20145202马超《网络对抗》Exp9*_* Web安全基础实践
本实践的目标理解常用网络攻击技术的基本原理.Webgoat实践下相关实验. 1.实验后回答问题 (1)SQL注入攻击原理,如何防御 感觉上次做的也是sql注入,就是故意的非法输入(输入的是一些指令)让 ...
- 北京Uber优步司机奖励政策(3月24日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 关于 Windows 10 字体安装目录的问题
不知从什么时候开始,本人台式机的Win10系统在安装字体的时候并不是安装到C:\Windows\Fonts目录中,而是安装到%USERPROFILE%\AppData\Local\Microsoft\ ...
- 「LeetCode」0001-Two Sum(Ruby)
题意与分析 题意直接给出来了:给定一个数,返回数组中和为该数(下为\(x\))的两个数的下标. 这里有一个显然的\(O(n)\)的实现:建立一个hash表,每次读入数(记作\(p\))的时候查询has ...
- HTTP基本定义
一.网络的简单定义: 1.http:是www服务器传输超文本向本地浏览器的传输协议.(应用层) 2.IP:是计算机之间相互识别通信的机制.(网络层) 3.TCP:是应用层通信之间通信.(传输层) IP ...
- Linux命令应用大词典-第10章 Shell相关命令
10.1 commond:抑制正常的Shell函数查找 10.2 exec:使用执行命令替换当前的shell进程 10.3 bash:GNU的Bourne-Again Shell解释器 10.4 bu ...
- 在deepin系统中制作桌面快捷方式
在使用deepin-wine 安装一些软件的时候,每次启动都需要到.deepinwine目录下运行deepin-wine xx.exe.笔者在安装过HeidiSql之后,一直苦于这种情况.比较好的解决 ...
- 小程序开发中,纯css实现内容收起折叠功能
不多说,直接上代码: wxml页面: <!--收起折叠 begin--> <view style='width:100%;background:#fff;border-top:1px ...
- spark-shell解析
spark-shell 作用: 调用spark-submit脚本,如下参数 --classorg.apache.spark.repl.Main --name "Spark shell&quo ...
- Laxcus大数据管理系统2.0(6)- 第四章 数据计算
第四章 数据计算 Laxcus所有数据计算工作都是通过网络实施.相较于集中计算,在网络间进行的数据计算更适合处理那些数据量大.复杂的.耗时长的计算任务.能够实施网络计算的前提是数据可以被分割,就是把一 ...