前者是后者各方面的强化版。

  容易想到设f[i][j]表示i子树中第j小的是i的方案数(即只考虑相对关系)。比较麻烦的在于转移。考虑逐个合并子树。容易想到枚举根原来的排名和子树根原来的排名,算一发组合数。具体要考虑的是当前有n个0、m个1,将他们排成一排,要求其中第x个0在k号位,第y个1在k号位的右边(1表示要合并上去的子树中的节点,对应父亲<儿子的情况)。那么显然当y>k-x时存在方案,且方案数为C(k-1,x-1)·C(n+m-k,n-x)。父亲>儿子的情况类似。直接算就是O(n3)的,前缀和优化一发就可以做到O(n2)了,因为这种类似背包的与子树大小相关的转移相当于在LCA处考虑每个点对。

  upd:突然发现之前写的复杂度是假的……改正确了一点莫名其妙拿了luogu rank1。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c!='<')&&(c!='>')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,f[N][N],C[N][N],size[N],p[N],t;
struct data{int to,nxt,op;
}edge[N<<];
void addedge(int x,int y,int op){t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].op=op,p[x]=t;}
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
inline int c(int n,int m){return C[n][m];}
void dfs(int k,int from)
{
size[k]=;memset(f[k],,sizeof(f[k]));f[k][]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
dfs(edge[i].to,k);
for (int j=size[k]+size[edge[i].to];j>=;j--)
{
int s=;
for (int x=max(,j-size[edge[i].to]);x<=min(j,size[k]);x++)
if (edge[i].op) inc(s,1ll*f[k][x]*c(j-,x-)%P*c(size[k]+size[edge[i].to]-j,size[k]-x)%P*f[edge[i].to][j-x]%P);
else inc(s,1ll*f[k][x]*c(j-,x-)%P*c(size[k]+size[edge[i].to]-j,size[k]-x)%P*(f[edge[i].to][size[edge[i].to]]-f[edge[i].to][j-x]+P)%P);
f[k][j]=s;
}
size[k]+=size[edge[i].to];
}
for (int i=;i<=size[k];i++) inc(f[k][i],f[k][i-]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3167.in","r",stdin);
freopen("bzoj3167.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read();
memset(p,,sizeof(p));t=;
for (int i=;i<n;i++)
{
int x;scanf("%d",&x);x++;int op=getc()=='<';int y=read()+;
addedge(x,y,op^),addedge(y,x,op);
}
C[][]=;
for (int i=;i<=n;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
dfs(,);
cout<<f[][n]<<endl;
}
return ;
}

BZOJ3167/BZOJ4824 HEOI2013SAO/CQOI2017老C的键盘(树形dp)的更多相关文章

  1. [BZOJ4824][CQOI2017]老C的键盘(树形DP)

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 193  Solved: 149[Submit][Statu ...

  2. [BZOJ4824][Cqoi2017]老C的键盘 树形dp+组合数

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 218  Solved: 171[Submit][Statu ...

  3. BZOJ 4824 [Cqoi2017]老C的键盘 ——树形DP

    每一个限制条件相当于一条有向边, 忽略边的方向,就成了一道裸的树形DP题 同BZOJ3167 唯一的区别就是这个$O(n^3)$能过 #include <map> #include < ...

  4. [CQOI2017]老C的键盘

    [CQOI2017]老C的键盘 题目描述 额,网上题解好像都是用的一大堆组合数,然而我懒得推公式. 设\(f[i][j]\)表示以\(i\)为根,且\(i\)的权值为\(j\)的方案数. 转移: \[ ...

  5. [bzoj4824][Cqoi2017]老C的键盘

    来自FallDream的博客,未经允许,请勿转载,谢谢. 老 C 是个程序员.     作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序在某种 ...

  6. [bzoj4824][洛谷P3757][Cqoi2017]老C的键盘

    Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 Q 也 ...

  7. 【BZOJ3167/4824】[Heoi2013]Sao/[Cqoi2017]老C的键盘

    [BZOJ3167][Heoi2013]Sao Description WelcometoSAO(StrangeandAbnormalOnline).这是一个VRMMORPG,含有n个关卡.但是,挑战 ...

  8. bzoj 4824: [Cqoi2017]老C的键盘

    Description 老 C 是个程序员.     作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...

  9. Luogu P3757 [CQOI2017]老C的键盘

    题目描述 老C的键盘 题解 显然对于每个数 x 都有唯一对应的 \(x/2\) , 然而对于每个数 x 却可以成为 \(x*2\) 和 \(x*2+1\) 的对应数 根据这一特性想到了啥??? 感谢l ...

随机推荐

  1. 全国Uber优步司机奖励政策 (1月11日-1月17日)

    本周已经公开奖励整的城市有:北 京.成 都.重 庆.上 海.深 圳.长 沙.佛 山.广 州.苏 州.杭 州.南 京.宁 波.青 岛.天 津.西 安.武 汉.厦 门,可按CTRL+F,搜城市名快速查找. ...

  2. Qt 学习之路 2

    Qt 学习之路 2 | DevBean Tech World Qt 学习之路 2 Qt 学习之路 2 目录

  3. day 2 给程序传递参数

    1.如何实现变化name name = "alex" print("欢迎%s前来指导学习"%name) 欢迎alex前来指导学习 2.sys.argv impo ...

  4. agc 027 B - Garbage Collector

    B - Garbage Collector https://agc027.contest.atcoder.jp/tasks/agc027_b 题意: x坐标轴上n个垃圾,有一个机器人在从原点,要清扫垃 ...

  5. springboot之RMI的使用

    1.RMI 指的是远程方法调用 (Remote Method Invocation).它是一种机制,能够让在某个 Java虚拟机上的对象调用另一个 Java 虚拟机中的对象上的方法.可以用此方法调用的 ...

  6. iOS SSL Pinning 保护你的 API

    随着互联网的发展,网站全面 https 化已经越来越被重视,做为 App 开发人员,从一开始就让 API 都走 SSL 也是十分必要的.但是光这样就足够了吗? SSL 可以保护线上 API 数据不被篡 ...

  7. ansible基础配置使用(一)

    test  test  test

  8. Python Road

    引子 雁离群兮不知所归,路遥远兮吾将何往   Python Road[第一篇]:Python简介 Python Road[第二篇]:Python基本数据类型 Python Road[第三篇]:Pyth ...

  9. Qml-Dialog不能隐藏标题栏和按钮自定义

    在项目中,需要弹出一个对话框来完成用户输入的功能,为了考虑界面的同一,这里需要将原生自带的标题栏隐藏掉,换成自己写的 按照widget的写法,可以使用QDialog,但是qml与之对应的Dialog我 ...

  10. Micro:bit 硬件架构介绍

    Micro:bit做为当红的少儿编程工具,这两年在编程教育领域越来越火.今天就从硬件架构开始,分享Micro:bit的相关主题. Microbit 硬件设计是根据ARM mbed技术所开发的应用IC及 ...