BZOJ3167/BZOJ4824 HEOI2013SAO/CQOI2017老C的键盘(树形dp)
前者是后者各方面的强化版。
容易想到设f[i][j]表示i子树中第j小的是i的方案数(即只考虑相对关系)。比较麻烦的在于转移。考虑逐个合并子树。容易想到枚举根原来的排名和子树根原来的排名,算一发组合数。具体要考虑的是当前有n个0、m个1,将他们排成一排,要求其中第x个0在k号位,第y个1在k号位的右边(1表示要合并上去的子树中的节点,对应父亲<儿子的情况)。那么显然当y>k-x时存在方案,且方案数为C(k-1,x-1)·C(n+m-k,n-x)。父亲>儿子的情况类似。直接算就是O(n3)的,前缀和优化一发就可以做到O(n2)了,因为这种类似背包的与子树大小相关的转移相当于在LCA处考虑每个点对。
upd:突然发现之前写的复杂度是假的……改正确了一点莫名其妙拿了luogu rank1。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c!='<')&&(c!='>')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,f[N][N],C[N][N],size[N],p[N],t;
struct data{int to,nxt,op;
}edge[N<<];
void addedge(int x,int y,int op){t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].op=op,p[x]=t;}
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
inline int c(int n,int m){return C[n][m];}
void dfs(int k,int from)
{
size[k]=;memset(f[k],,sizeof(f[k]));f[k][]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
dfs(edge[i].to,k);
for (int j=size[k]+size[edge[i].to];j>=;j--)
{
int s=;
for (int x=max(,j-size[edge[i].to]);x<=min(j,size[k]);x++)
if (edge[i].op) inc(s,1ll*f[k][x]*c(j-,x-)%P*c(size[k]+size[edge[i].to]-j,size[k]-x)%P*f[edge[i].to][j-x]%P);
else inc(s,1ll*f[k][x]*c(j-,x-)%P*c(size[k]+size[edge[i].to]-j,size[k]-x)%P*(f[edge[i].to][size[edge[i].to]]-f[edge[i].to][j-x]+P)%P);
f[k][j]=s;
}
size[k]+=size[edge[i].to];
}
for (int i=;i<=size[k];i++) inc(f[k][i],f[k][i-]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3167.in","r",stdin);
freopen("bzoj3167.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read();
memset(p,,sizeof(p));t=;
for (int i=;i<n;i++)
{
int x;scanf("%d",&x);x++;int op=getc()=='<';int y=read()+;
addedge(x,y,op^),addedge(y,x,op);
}
C[][]=;
for (int i=;i<=n;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
dfs(,);
cout<<f[][n]<<endl;
}
return ;
}
BZOJ3167/BZOJ4824 HEOI2013SAO/CQOI2017老C的键盘(树形dp)的更多相关文章
- [BZOJ4824][CQOI2017]老C的键盘(树形DP)
4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 193 Solved: 149[Submit][Statu ...
- [BZOJ4824][Cqoi2017]老C的键盘 树形dp+组合数
4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 218 Solved: 171[Submit][Statu ...
- BZOJ 4824 [Cqoi2017]老C的键盘 ——树形DP
每一个限制条件相当于一条有向边, 忽略边的方向,就成了一道裸的树形DP题 同BZOJ3167 唯一的区别就是这个$O(n^3)$能过 #include <map> #include < ...
- [CQOI2017]老C的键盘
[CQOI2017]老C的键盘 题目描述 额,网上题解好像都是用的一大堆组合数,然而我懒得推公式. 设\(f[i][j]\)表示以\(i\)为根,且\(i\)的权值为\(j\)的方案数. 转移: \[ ...
- [bzoj4824][Cqoi2017]老C的键盘
来自FallDream的博客,未经允许,请勿转载,谢谢. 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序在某种 ...
- [bzoj4824][洛谷P3757][Cqoi2017]老C的键盘
Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 Q 也 ...
- 【BZOJ3167/4824】[Heoi2013]Sao/[Cqoi2017]老C的键盘
[BZOJ3167][Heoi2013]Sao Description WelcometoSAO(StrangeandAbnormalOnline).这是一个VRMMORPG,含有n个关卡.但是,挑战 ...
- bzoj 4824: [Cqoi2017]老C的键盘
Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...
- Luogu P3757 [CQOI2017]老C的键盘
题目描述 老C的键盘 题解 显然对于每个数 x 都有唯一对应的 \(x/2\) , 然而对于每个数 x 却可以成为 \(x*2\) 和 \(x*2+1\) 的对应数 根据这一特性想到了啥??? 感谢l ...
随机推荐
- 全国Uber优步司机奖励政策 (1月11日-1月17日)
本周已经公开奖励整的城市有:北 京.成 都.重 庆.上 海.深 圳.长 沙.佛 山.广 州.苏 州.杭 州.南 京.宁 波.青 岛.天 津.西 安.武 汉.厦 门,可按CTRL+F,搜城市名快速查找. ...
- Qt 学习之路 2
Qt 学习之路 2 | DevBean Tech World Qt 学习之路 2 Qt 学习之路 2 目录
- day 2 给程序传递参数
1.如何实现变化name name = "alex" print("欢迎%s前来指导学习"%name) 欢迎alex前来指导学习 2.sys.argv impo ...
- agc 027 B - Garbage Collector
B - Garbage Collector https://agc027.contest.atcoder.jp/tasks/agc027_b 题意: x坐标轴上n个垃圾,有一个机器人在从原点,要清扫垃 ...
- springboot之RMI的使用
1.RMI 指的是远程方法调用 (Remote Method Invocation).它是一种机制,能够让在某个 Java虚拟机上的对象调用另一个 Java 虚拟机中的对象上的方法.可以用此方法调用的 ...
- iOS SSL Pinning 保护你的 API
随着互联网的发展,网站全面 https 化已经越来越被重视,做为 App 开发人员,从一开始就让 API 都走 SSL 也是十分必要的.但是光这样就足够了吗? SSL 可以保护线上 API 数据不被篡 ...
- ansible基础配置使用(一)
test test test
- Python Road
引子 雁离群兮不知所归,路遥远兮吾将何往 Python Road[第一篇]:Python简介 Python Road[第二篇]:Python基本数据类型 Python Road[第三篇]:Pyth ...
- Qml-Dialog不能隐藏标题栏和按钮自定义
在项目中,需要弹出一个对话框来完成用户输入的功能,为了考虑界面的同一,这里需要将原生自带的标题栏隐藏掉,换成自己写的 按照widget的写法,可以使用QDialog,但是qml与之对应的Dialog我 ...
- Micro:bit 硬件架构介绍
Micro:bit做为当红的少儿编程工具,这两年在编程教育领域越来越火.今天就从硬件架构开始,分享Micro:bit的相关主题. Microbit 硬件设计是根据ARM mbed技术所开发的应用IC及 ...