1. fail-fast简介
“快速失败”也就是fail-fast,它是Java集合的一种错误检测机制。某个线程在对collection进行迭代时,不允许其他线程对该collection进行结构上的修改。
例如:假设存在两个线程(线程1、线程2),线程1通过Iterator在遍历集合A中的元素,在某个时候线程2修改了集合A的结构(是结构上面的修改,而不是简单的修改集合元素的内容),那么这个时候程序就会抛出 ConcurrentModificationException 异常,从而产生fail-fast。
迭代器的快速失败行为无法得到保证,它不能保证一定会出现该错误,因此,ConcurrentModificationException应该仅用于检测 bug。
Java.util包中的所有集合类都是快速失败的,而java.util.concurrent包中的集合类都是安全失败的;
快速失败的迭代器抛出ConcurrentModificationException,而安全失败的迭代器从不抛出这个异常。

2 fail-fast示例
示例代码:(FastFailTest.java)
import java.util.*;
import java.util.concurrent.*;

/*
* @desc java集合中Fast-Fail的测试程序。
*
* fast-fail事件产生的条件:当多个线程对Collection进行操作时,若其中某一个线程通过iterator去遍历集合时,该集合的内容被其他线程所改变;则会抛出ConcurrentModificationException异常。
* fast-fail解决办法:通过util.concurrent集合包下的相应类去处理,则不会产生fast-fail事件。
*
* 本例中,分别测试ArrayList和CopyOnWriteArrayList这两种情况。ArrayList会产生fast-fail事件,而CopyOnWriteArrayList不会产生fast-fail事件。
* (01) 使用ArrayList时,会产生fast-fail事件,抛出ConcurrentModificationException异常;定义如下:
* private static List<String> list = new ArrayList<String>();
* (02) 使用时CopyOnWriteArrayList,不会产生fast-fail事件;定义如下:
* private static List<String> list = new CopyOnWriteArrayList<String>();
*
* @author skywang
*/
public class FastFailTest {

private static List<String> list = new ArrayList<String>();
//private static List<String> list = new CopyOnWriteArrayList<String>();
public static void main(String[] args) {

// 同时启动两个线程对list进行操作!
new ThreadOne().start();
new ThreadTwo().start();
}

private static void printAll() {
System.out.println("");

String value = null;
Iterator iter = list.iterator();
while(iter.hasNext()) {
value = (String)iter.next();
System.out.print(value+", ");
}
}

/**
* 向list中依次添加0,1,2,3,4,5,每添加一个数之后,就通过printAll()遍历整个list
*/
private static class ThreadOne extends Thread {
public void run() {
int i = 0;
while (i<6) {
list.add(String.valueOf(i));
printAll();
i++;
}
}
}

/**
* 向list中依次添加10,11,12,13,14,15,每添加一个数之后,就通过printAll()遍历整个list
*/
private static class ThreadTwo extends Thread {
public void run() {
int i = 10;
while (i<16) {
list.add(String.valueOf(i));
printAll();
i++;
}
}
}

}

运行结果
运行该代码,抛出异常java.util.ConcurrentModificationException!即,产生fail-fast事件!
结果说明
(01) FastFailTest中通过 new ThreadOne().start() 和 new ThreadTwo().start() 同时启动两个线程去操作list。
ThreadOne线程:向list中依次添加0,1,2,3,4,5。每添加一个数之后,就通过printAll()遍历整个list。
ThreadTwo线程:向list中依次添加10,11,12,13,14,15。每添加一个数之后,就通过printAll()遍历整个list。
(02) 当某一个线程遍历list的过程中,list的内容被另外一个线程所改变了;就会抛出ConcurrentModificationException异常,产生fail-fast事件。
3. fail-fast解决办法
fail-fast机制,是一种错误检测机制。它只能被用来检测错误,因为JDK并不保证fail-fast机制一定会发生。若在多线程环境下使用fail-fast机制的集合,建议使用“java.util.concurrent包下的类”去取代“java.util包下的类”。
所以,本例中只需要将ArrayList替换成java.util.concurrent包下对应的类即可。 即,将代码
private static List<String> list = new ArrayList<String>();
替换为
private static List<String> list = new CopyOnWriteArrayList<String>();
则可以解决该办法。
4. fail-fast原理
产生fail-fast事件,是通过抛出ConcurrentModificationException异常来触发的。
那么,ArrayList是如何抛出ConcurrentModificationException异常的呢?
我们知道,ConcurrentModificationException是在操作Iterator时抛出的异常。我们先看看Iterator的源码。ArrayList的Iterator是在父类AbstractList.java中实现的。代码如下:
package java.util;
public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {

...

// AbstractList中唯一的属性
// 用来记录List修改的次数:每修改一次(添加/删除等操作),将modCount+1
protected transient int modCount = 0;

// 返回List对应迭代器。实际上,是返回Itr对象。
public Iterator<E> iterator() {
return new Itr();
}

// Itr是Iterator(迭代器)的实现类
private class Itr implements Iterator<E> {
int cursor = 0;

int lastRet = -1;

// 修改数的记录值。
// 每次新建Itr()对象时,都会保存新建该对象时对应的modCount;
// 以后每次遍历List中的元素的时候,都会比较expectedModCount和modCount是否相等;
// 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。
int expectedModCount = modCount;

public boolean hasNext() {
return cursor != size();
}

public E next() {
// 获取下一个元素之前,都会判断“新建Itr对象时保存的modCount”和“当前的modCount”是否相等;
// 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。
checkForComodification();
try {
E next = get(cursor);
lastRet = cursor++;
return next;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
}

public void remove() {
if (lastRet == -1)
throw new IllegalStateException();
checkForComodification();

try {
AbstractList.this.remove(lastRet);
if (lastRet < cursor)
cursor--;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException e) {
throw new ConcurrentModificationException();
}
}

final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}

...
}

从中,我们可以发现在调用 next() 和 remove()时,都会执行 checkForComodification()。若 “modCount 不等于 expectedModCount”,则抛出ConcurrentModificationException异常,产生fail-fast事件。
要搞明白 fail-fast机制,我们就要需要理解什么时候“modCount 不等于 expectedModCount”!
从Itr类中,我们知道 expectedModCount 在创建Itr对象时,被赋值为 modCount。通过Itr,我们知道:expectedModCount不可能被修改为不等于 modCount。所以,需要考证的就是modCount何时会被修改。
接下来,我们查看ArrayList的源码,来看看modCount是如何被修改的。
package java.util;

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{

...

// list中容量变化时,对应的同步函数
public void ensureCapacity(int minCapacity) {
modCount++;
int oldCapacity = elementData.length;
if (minCapacity > oldCapacity) {
Object oldData[] = elementData;
int newCapacity = (oldCapacity * 3)/2 + 1;
if (newCapacity < minCapacity)
newCapacity = minCapacity;
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
}

// 添加元素到队列最后
public boolean add(E e) {
// 修改modCount
ensureCapacity(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}

// 添加元素到指定的位置
public void add(int index, E element) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size);

// 修改modCount
ensureCapacity(size+1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}

// 添加集合
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
// 修改modCount
ensureCapacity(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}

// 删除指定位置的元素
public E remove(int index) {
RangeCheck(index);

// 修改modCount
modCount++;
E oldValue = (E) elementData[index];

int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index, numMoved);
elementData[--size] = null; // Let gc do its work

return oldValue;
}

// 快速删除指定位置的元素
private void fastRemove(int index) {

// 修改modCount
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
}

// 清空集合
public void clear() {
// 修改modCount
modCount++;

// Let gc do its work
for (int i = 0; i < size; i++)
elementData[i] = null;

size = 0;
}

...
}

从中,我们发现:无论是add()、remove(),还是clear(),只要涉及到修改集合中的元素个数时,都会改变modCount的值。
接下来,我们再系统的梳理一下fail-fast是怎么产生的。步骤如下:
(01) 新建了一个ArrayList,名称为arrayList。
(02) 向arrayList中添加内容。
(03) 新建一个“线程a”,并在“线程a”中通过Iterator反复的读取arrayList的值。
(04) 新建一个“线程b”,在“线程b”中删除arrayList中的一个“节点A”。
(05) 这时,就会产生有趣的事件了。
在某一时刻,“线程a”创建了arrayList的Iterator。此时“节点A”仍然存在于arrayList中,创建arrayList时,expectedModCount = modCount(假设它们此时的值为N)。
在“线程a”在遍历arrayList过程中的某一时刻,“线程b”执行了,并且“线程b”删除了arrayList中的“节点A”。“线程b”执行remove()进行删除操作时,在remove()中执行了“modCount++”,此时modCount变成了N+1!
“线程a”接着遍历,当它执行到next()函数时,调用checkForComodification()比较“expectedModCount”和“modCount”的大小;而“expectedModCount=N”,“modCount=N+1”,这样,便抛出ConcurrentModificationException异常,产生fail-fast事件。
至此,我们就完全了解了fail-fast是如何产生的!
即,当多个线程对同一个集合进行操作的时候,某线程访问集合的过程中,该集合的内容被其他线程所改变(即其它线程通过add、remove、clear等方法,改变了modCount的值);这时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。
5. 解决fail-fast的原理
上面,说明了“解决fail-fast机制的办法”,也知道了“fail-fast产生的根本原因”。接下来,我们再进一步谈谈java.util.concurrent包中是如何解决fail-fast事件的。
还是以和ArrayList对应的CopyOnWriteArrayList进行说明。我们先看看CopyOnWriteArrayList的源码:
package java.util.concurrent;
import java.util.*;
import java.util.concurrent.locks.*;
import sun.misc.Unsafe;

public class CopyOnWriteArrayList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {

...

// 返回集合对应的迭代器
public Iterator<E> iterator() {
return new集合类中的fast-fail实现方式都差不多,我们以最简单的ArrayList为例吧。protected transient int modCount = 0;记录的是我们对ArrayList修改的次数,比如我们调用 add(),remove()等改变数据的操作时,会将modCount++。protected transient int modCount = 0;记录的是我们对ArrayList修改的次数,比如我们调用 add(),remove()等改变数据的操作时,会将modCount++。 COWIterator<E>(getArray(), 0);
}

...

private static class COWIterator<E> implements ListIterator<E> {
private final Object[] snapshot;

private int cursor;

private COWIterator(Object[] elements, int initialCursor) {
cursor = initialCursor;
// 新建COWIterator时,将集合中的元素保存到一个新的拷贝数组中。
// 这样,当原始集合的数据改变,拷贝数据中的值也不会变化。
snapshot = elements;
}

public boolean hasNext() {
return cursor < snapshot.length;
}

public boolean hasPrevious() {
return cursor > 0;
}

public E next() {
if (! hasNext())
throw new NoSuchElementException();
return (E) snapshot[cursor++];
}

public E previous() {
if (! hasPrevious())
throw new NoSuchElementException();
return (E) snapshot[--cursor];
}

public int nextIndex() {
return cursor;
}

public int previousIndex() {
return cursor-1;
}

public void remove() {
throw new UnsupportedOperationException();
}

public void set(E e) {
throw new UnsupportedOperationException();
}

public void add(E e) {
throw new UnsupportedOperationException();
}
}

...

}

从中,我们可以看出:
(01) 和ArrayList继承于AbstractList不同,CopyOnWriteArrayList没有继承于AbstractList,它仅仅只是实现了List接口。
(02) ArrayList的iterator()函数返回的Iterator是在AbstractList中实现的;而CopyOnWriteArrayList是自己实现Iterator。
(03) ArrayList的Iterator实现类中调用next()时,会“调用checkForComodification()比较‘expectedModCount'和‘modCount'的大小”;但是,CopyOnWriteArrayList的Iterator实现类中,没有所谓的checkForComodification(),更不会抛出ConcurrentModificationException异常!
6. 总结
由于HashMap(ArrayList)并不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map(这里的修改是指结构上的修改,并非指单纯修改集合内容的元素),那么将要抛出ConcurrentModificationException 即为fail-fast策略
主要通过modCount域来实现,保证线程之间的可见性,modCount即为修改次数,对于HashMap(ArrayList)内容的修改就会增加这个值, 那么在迭代器的初始化过程中就会将这个值赋值给迭代器的expectedModCount
但是fail-fast行为并不能保证,因此依赖于此异常的程序的做法是错误的。

由ArrayList来深入理解Java中的fail-fast机制的更多相关文章

  1. 深入理解Java中方法的参数传递机制

    形参和实参 我们知道,在Java中定义方法时,是可以定义参数的,比如: public static void main(String[] args){ } 这里的args就是一个字符串数组类型的参数. ...

  2. 深入理解Java中的不可变对象

    深入理解Java中的不可变对象 不可变对象想必大部分朋友都不陌生,大家在平时写代码的过程中100%会使用到不可变对象,比如最常见的String对象.包装器对象等,那么到底为何Java语言要这么设计,真 ...

  3. JDK学习---深入理解java中的LinkedList

    本文参考资料: 1.<大话数据结构> 2.http://blog.csdn.net/jzhf2012/article/details/8540543 3.http://blog.csdn. ...

  4. 理解Java中的弱引用(Weak Reference)

    本篇文章尝试从What.Why.How这三个角度来探索Java中的弱引用,理解Java中弱引用的定义.基本使用场景和使用方法.由于个人水平有限,叙述中难免存在不准确或是不清晰的地方,希望大家可以指出, ...

  5. 深刻理解Java中final的作用(一):从final的作用剖析String被设计成不可变类的深层原因

    声明:本博客为原创博客,未经同意,不得转载!小伙伴们假设是在别的地方看到的话,建议还是来csdn上看吧(原文链接为http://blog.csdn.net/bettarwang/article/det ...

  6. [译]线程生命周期-理解Java中的线程状态

    线程生命周期-理解Java中的线程状态 在多线程编程环境下,理解线程生命周期和线程状态非常重要. 在上一篇教程中,我们已经学习了如何创建java线程:实现Runnable接口或者成为Thread的子类 ...

  7. 深入理解Java中的IO

    深入理解Java中的IO 引言:     对程序语言的设计者来说,创建一个好的输入/输出(I/O)系统是一项艰难的任务 < Thinking in Java >   本文的目录视图如下: ...

  8. 理解Java中的ThreadLocal

    提到ThreadLocal,有些Android或者Java程序员可能有所陌生,可能会提出种种问题,它是做什么的,是不是和线程有关,怎么使用呢?等等问题,本文将总结一下我对ThreadLocal的理解和 ...

  9. 深入理解Java中配置环境变量

    深入理解Java中配置环境变量 配置的目的: 本来只在安装JDK的bin目下能运行java.exe,javac.exe,jar.exe,javadoc.exe等Java开发工具包命令,我们现在想让在所 ...

随机推荐

  1. “全栈2019”Java第四十三章:封装

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  2. uC/OS-II 函数之OSInit()

    获得更多资料欢迎进入我的网站或者 csdn或者博客园 对于有热心的小伙伴在微博上私信我,说我的uC/OS-II 一些函数简介篇幅有些过于长应该分开介绍.应小伙伴的要求,特此将文章分开进行讲解.本文主要 ...

  3. Maven环境下面多项目之间的引用

    如图: https://github.com/sdl/odata-example  sdl OData例子包含了4个项目,下载到本地后编译.发现只有model项目是可以编译过去了.其他几个暂时编译不过 ...

  4. 04day->python列表和元祖

    一.列表 1.索引.切片     索引:根据索引值获取,里表里的值     切片:和字符串相似 2.增     1)append(object),在列表的末端添加     2)insert(index ...

  5. Little Sub and Traveling(杭师大第十二届校赛E题) 欧拉回路

    题目传送门 题目大意: 从0出发,每次只能跳到(i*2)%n或者(i*2+1)%n,求字典序最大的哈密顿回路. 思路: 首先n为奇数时无解,先来证明这一点. 先假设n为奇数,若要回到原点,则必定有一步 ...

  6. Python——单例设计模式

    单例设计模式: 让类创建的对象,在系统中只有唯一的实例, 使用python类内置的__new__()方法实现,__new__()方法在创建对象时会被自动调用,通过重写__new__()方法,使得无论用 ...

  7. JS实现跨域请求数据--CORS

    https://www.cnblogs.com/cjw-ryh/p/7674038.html?utm_source=debugrun&utm_medium=referral

  8. python调用另一个.py文件中的类和函数

    同一文件夹下的调用 1.调用函数 A.py文件如下:def add(x,y):    print('和为:%d'%(x+y)) 在B.py文件中调用A.py的add函数如下: import AA.ad ...

  9. mysql 02

    CREATE TABLE emp(eid INT,ename VARCHAR(20),egender CHAR(2),ebirthday DATE,eemail CHAR(10),eramark VA ...

  10. jQuery练习 | 模态对话框(添加删除)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...