Strange Country

Time Limit: 1 Second      Memory Limit: 32768 KB

There are n cities in the dream country. Let's use integers from 1 to n to denote the cities. There are some roads between cities. To some strange, all the roads are bidirectional and the roads change from time to time. You have m maps of the country of different time. You are going to the dream country soon and you want to start your journey at city s and finish it at city t. Though you cannot predict the condition when you get there, you think it is useful to study the maps carefully. After studying the maps, you find that all the roads in all maps have the same length and there is an s-t path in each map. You want to choose an s-t path in each map and the paths are relatively short. Further more you don't want too many changes in the paths.

Formally suppose you have chosen an s-t path in each map, namely P1, P2,...Pm. Let's define a path's length to be simply the number of edges in it and use LEN to denote the total length of all the paths. Let's define a function as follow: CHANGE(P1, P2,...Pm) is the number of indices i (0 < i < m) for which Pi != Pi+1. Let's define the cost function as follow: COST(P1, P2,...Pm) = LEN + CHANGE(P1, P2,...Pm). You are supposed to find the minimum cost.

Input

There are multiple test cases. The first line of input is an integer T (0 < T < 205) indicating the number of test cases. Then T test cases follow. The first line of each test case is 4 integers n, m, s, t (1 < n, m <= 30, 0 < s, t <= n, s != t). Then there are m map descriptions. The first line of each map description is an integer R, the number of roads in the map (0 < R <= n * (n - 1) / 2). Each of the next R lines contains two integers a, b, the two cities that road connects( 0 < a, b <= n, a != b). You can assume that for each test case there is an s-t path in each map.

Output

For each test case, output in a line the minimum cost defined above.

Sample Input

2
3 3 2 3
2
1 2
3 1
3
1 2
2 3
3 2
2
2 1
2 3
4 2 1 4
3
1 2
2 3
3 4
3
1 2
2 3
3 4

Sample Output

5
6

Hint

Test case 1: three paths are 2-1-3, 2-3, 2-3.

Test case 2: both paths are 1-2-3-4.


Author: CAO, Peng

Source: The 10th Zhejiang University Programming Contest
Submit

Status

#include <iostream>
#include <stdio.h>
#include<cmath>
#include<algorithm>
#include<string.h>
#include<queue>
#include<set>
#define maxn 40
using namespace std;
int dist[maxn];
int mark[maxn][maxn];
int Edge[maxn][maxn];
int mmap[maxn][maxn][maxn];
int dp[maxn];
int n,m,s,t,flag;
int bfs()
{
memset(dist,0x3f,sizeof(dist));
flag = dist[0];
dist[s] = 0;
queue<int>que;
while(!que.empty()) que.pop();
que.push(s);
while(!que.empty())
{
int tmp = que.front();
que.pop();
for(int i=1;i<=n;i++)
{
if(Edge[tmp][i] == 1 && dist[i] > dist[tmp] + 1)
{
dist[i] = dist[tmp] + 1;
que.push(i);
}
}
}
return dist[t];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif // ONLINE_JUDGE
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d %d %d %d",&n,&m,&s,&t);
int R,u,v;
memset(mmap,0,sizeof(mmap));
memset(mark,0,sizeof(mark));
memset(dp,0,sizeof(dp));
for(int i=0; i<m; i++)
{
scanf("%d",&R);
for(int j=0; j<R; j++)
{
scanf("%d %d",&u,&v);
mmap[i][u][v] = 1;
mmap[i][v][u] = 1;
}
}
for(int i=0; i<m; i++)
{
memset(Edge,1,sizeof(Edge));
for(int j=i; j<m; j++)
{
for(int k=1; k<=n; k++)
{
for(int t= 1; t <=n; t++)
{
Edge[k][t] = Edge[k][t] & mmap[j][k][t];
}
}
mark[i][j] = bfs();
}
}
dp[0] = mark[0][0];
for(int i=1;i<=m;i++)
{
if(mark[0][i] != flag) dp[i] = mark[0][i] *(i+1);
else dp[i] = flag;
for(int j=0;j<i;j++)
{
if(mark[j+1][i] != flag)
dp[i] = min(dp[i] ,dp[j] + mark[j+1][i]*(i-j) + 1);
}
}
printf("%d\n",dp[m-1]);
}
return 0;
}

ZOJ-3318的更多相关文章

  1. ZOJ People Counting

    第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ  3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...

  2. ZOJ 3686 A Simple Tree Problem

    A Simple Tree Problem Time Limit: 3 Seconds      Memory Limit: 65536 KB Given a rooted tree, each no ...

  3. ZOJ Problem Set - 1394 Polar Explorer

    这道题目还是简单的,但是自己WA了好几次,总结下: 1.对输入的总结,加上上次ZOJ Problem Set - 1334 Basically Speaking ac代码及总结这道题目的总结 题目要求 ...

  4. ZOJ Problem Set - 1392 The Hardest Problem Ever

    放了一个长长的暑假,可能是这辈子最后一个这么长的暑假了吧,呵呵...今天来实验室了,先找了zoj上面简单的题目练练手直接贴代码了,不解释,就是一道简单的密文转换问题: #include <std ...

  5. ZOJ Problem Set - 1049 I Think I Need a Houseboat

    这道题目说白了是一道平面几何的数学问题,重在理解题目的意思: 题目说,弗雷德想买地盖房养老,但是土地每年会被密西西比河淹掉一部分,而且经调查是以半圆形的方式淹没的,每年淹没50平方英里,以初始水岸线为 ...

  6. ZOJ Problem Set - 1006 Do the Untwist

    今天在ZOJ上做了道很简单的题目是关于加密解密问题的,此题的关键点就在于求余的逆运算: 比如假设都是正整数 A=(B-C)%D 则 B - C = D*n + A 其中 A < D 移项 B = ...

  7. ZOJ Problem Set - 1001 A + B Problem

    ZOJ ACM题集,编译环境VC6.0 #include <stdio.h> int main() { int a,b; while(scanf("%d%d",& ...

  8. zoj 1788 Quad Trees

    zoj 1788 先输入初始化MAP ,然后要根据MAP 建立一个四分树,自下而上建立,先建立完整的一棵树,然后根据四个相邻的格 值相同则进行合并,(这又是递归的伟大),逐次向上递归 四分树建立完后, ...

  9. ZOJ 1958. Friends

    题目链接: ZOJ 1958. Friends 题目简介: (1)题目中的集合由 A-Z 的大写字母组成,例如 "{ABC}" 的字符串表示 A,B,C 组成的集合. (2)用运算 ...

  10. ZOJ

    某年浙大研究生考试的题目. 题目描述: 对给定的字符串(只包含'z','o','j'三种字符),判断他是否能AC. 是否AC的规则如下:1. zoj能AC:2. 若字符串形式为xzojx,则也能AC, ...

随机推荐

  1. BZOJ4503 两个串 【fft】

    题目链接 BZOJ4503 题解 水水题. 和残缺的字符串那题几乎是一样的 同样转化为多项式 同样TLE 同样要手写一下复数才A #include<algorithm> #include& ...

  2. Pycharm中一些不为人知的技巧

    工欲善其事必先利其器,Pycharm 是最受欢迎的Python开发工具,它提供的功能非常强大,是构建大型项目的理想工具之一,如果能挖掘出里面实用技巧,能带来事半功倍的效果. 以下操作都是基于 Wind ...

  3. Tomcat启动web项目报Bad version number in .class file (unable to load class ...)错误的解决方法

    一.发现问题:启动 tomcat 控制台报该错误.   二.原因:tomcat 的 jdk 版本和编译.class的 jdk 版本不一致.   三.解决办法:   步骤一: 查看 MyEclipse ...

  4. select2 全拼以及首字母

    转自:https://blog.csdn.net/kanhuadeng/article/details/78475317 具体实现方法为: 首先需要在网上下载select2的源码,并引入到项目中,具体 ...

  5. 将shell返回的结果保存至数组

    如下,我需要将u1和u2提取出保存至数组,方便后续的调用 root@ubuntu:~# lxc list+------+---------+------------------------------ ...

  6. java removeAll和重写equals、hashcode引起的性能问题

    问题背景: 上周发现了一个spark job的执行时间从原来的10-15分钟延迟到了7个小时!wtf,这是出了什么事引起了这么大的性能问题!! 立马查看job的运行日志,发现多次运行都是在某一个固定的 ...

  7. 小米路由器设置DMZ主机 并在外网访问

    一.前提条件: 1.小米路由器 2.拥有公网IP的网络 二.步骤: 1.登陆小米路由器管理界面  miwifi.com 2.高级设置=>端口转发  页面底部的DMZ选项开启,然后选择需要映射到外 ...

  8. [Leetcode] LRU 算法实现

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  9. 【设计模式】 模式PK:门面模式VS中介者模式

    1.概述 门面模式为复杂的子系统提供一个统一的访问界面,它定义的是一个高层接口,该接口使得子系统更加容易使用,避免外部模块深入到子系统内部而产生与子系统内部细节耦合的问题.中介者模式使用一个中介对象来 ...

  10. 【51NOD】1201 整数划分

    [题意]将n划分成不同正整数的和的方案数. [算法]动态规划 [题解] 暴力:f[i][j]:只用前1..i的数字,总和为j的方案数 本质上是01背包,前i个物体,总质量为j的方案数 f[i][j]= ...