Mining Station on the Sea

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2997    Accepted Submission(s): 913

Problem Description
The
ocean is a treasure house of resources and the development of human
society comes to depend more and more on it. In order to develop and
utilize marine resources, it is necessary to build mining stations on
the sea. However, due to seabed mineral resources, the radio signal in
the sea is often so weak that not all the mining stations can carry out
direct communication. However communication is indispensable, every two
mining stations must be able to communicate with each other (either
directly or through other one or more mining stations). To meet the need
of transporting the exploited resources up to the land to get put into
use, there build n ports correspondently along the coast and every port
can communicate with one or more mining stations directly.

Due to
the fact that some mining stations can not communicate with each other
directly, for the safety of the navigation for ships, ships are only
allowed to sail between mining stations which can communicate with each
other directly.

The mining is arduous and people do this job
need proper rest (that is, to allow the ship to return to the port). But
what a coincidence! This time, n vessels for mining take their turns to
take a rest at the same time. They are scattered in different stations
and now they have to go back to the port, in addition, a port can only
accommodate one vessel. Now all the vessels will start to return, how to
choose their navigation routes to make the total sum of their sailing
routes minimal.

Notice that once the ship entered the port, it will not come out!

 
Input
There
are several test cases. Every test case begins with four integers in
one line, n (1 = <n <= 100), m (n <= m <= 200), k and p. n
indicates n vessels and n ports, m indicates m mining stations, k
indicates k edges, each edge corresponding to the link between a mining
station and another one, p indicates p edges, each edge indicating the
link between a port and a mining station. The following line is n
integers, each one indicating one station that one vessel belongs to.
Then there follows k lines, each line including 3 integers a, b and c,
indicating the fact that there exists direct communication between
mining stations a and b and the distance between them is c. Finally,
there follows another p lines, each line including 3 integers d, e and
f, indicating the fact that there exists direct communication between
port d and mining station e and the distance between them is f. In
addition, mining stations are represented by numbers from 1 to m, and
ports 1 to n. Input is terminated by end of file.

 
Output
Each test case outputs the minimal total sum of their sailing routes.
 
Sample Input
3 5 5 6
1 2 4
1 3 3
1 4 4
1 5 5
2 5 3
2 4 3
1 1 5
1 5 3
2 5 3
2 4 6
3 1 4
3 2 2
 
Sample Output
13
 

题意:现在有m个油井和n个港口(n<=m),现在有n条船停在这些油井这里,第一行输入n个数, 输入IDX[i]代表第i条船停在 IDX[i]这个油井这里,然后接下来有k行,输入u,v,w代表油井u和油井v之间的距离为w,然后又p行,代表了港口和油井之间的距离,现在这些船全部要回到港口,而且每个港口只能停一艘船,问这些船返回港口的最短距离。

题解:开始的时候建边,要为油田和油田建双向边,但是油田港口只能建单向边,因为回去了就不能往回走了.用spfa求出每艘船到每个港口的距离(注意编号,港口编号为 1+m~n+m),然后求出来之后进行KM算法最优匹配即可得到答案。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <stdlib.h>
using namespace std;
const int N = ;
const int INF = ;
int lx[N],ly[N];
bool visitx[N],visity[N];
int slack[N];
int match[N];
int graph[N][N];
int idx[N]; ///船所在的油井下标
int n,m,k,p;
bool Hungary(int u)
{
visitx[u] = true;
for(int i=m+; i<=m+n; i++)
{
if(!visity[i])
{
int temp = lx[u]+ly[i]-graph[u][i];
if(temp==)
{
visity[i] = true;
if(match[i]==-||Hungary(match[i]))
{
match[i] = u;
return true;
}
}
else
{
slack[i] = min(slack[i],temp);
}
}
}
return false;
}
void KM()
{
memset(match,-,sizeof(match));
memset(ly,,sizeof(ly));
for(int i=; i<=n; i++) ///定标初始化
{
lx[idx[i]] = -INF;
}
for(int i=; i<=n; i++)
{
for(int j=m+; j<=n+m; j++)
{
lx[idx[i]] = max(lx[idx[i]],graph[idx[i]][j]);
}
}
for(int i=; i<=n; i++)
{
for(int j=m+; j<=m+n; j++) slack[j] = INF;
while(true)
{
memset(visitx,false,sizeof(visitx));
memset(visity,false,sizeof(visity));
if(Hungary(idx[i])) break;
else
{
int temp = INF;
for(int j=+m; j<=n+m; j++)
{
if(!visity[j]) temp = min(temp,slack[j]);
}
for(int j=; j<=n; j++)
{
if(visitx[idx[j]]) lx[idx[j]]-=temp;
}
for(int j=; j<=n+m; j++)
{
if(visity[j]) ly[j]+=temp;
else slack[j]-=temp;
}
}
}
}
}
struct Edge
{
int v,w,next;
} edge[N*N];
int head[N],tot;
void init()
{
memset(head,-,sizeof(head));
tot = ;
}
void addEdge(int u,int v,int w,int &k)
{
edge[k].v = v,edge[k].w = w,edge[k].next = head[u],head[u] = k++;
}
int low[N];
bool vis[N];
void spfa(int s)
{
for(int i=; i<=n+m; i++)
{
low[i] = INF;
vis[i] = false;
}
queue<int> q;
low[s] = ;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i=head[u]; i!=-; i=edge[i].next)
{
int v = edge[i].v,w = edge[i].w;
if(low[v]>low[u]+w)
{
low[v] = low[u]+w;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
for(int i=+m; i<=n+m; i++)
{
if(low[i]!=INF)
{
graph[s][i] = -low[i];
}
}
}
int main()
{
while(scanf("%d%d%d%d",&n,&m,&k,&p)!=EOF)
{
init();
for(int i=; i<=n; i++)
{
scanf("%d",&idx[i]);
}
/**油田 1-m,港口 m+1-m+n*/
for(int i=; i<=k; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addEdge(u,v,w,tot);
addEdge(v,u,w,tot);
}
for(int i=; i<=p; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addEdge(v,u+m,w,tot); ///油井向港口添加单向边
}
memset(graph,,sizeof(graph));
for(int i=; i<=n; i++)
{
spfa(idx[i]);
}
KM();
int ans = ;
for(int i=+m; i<=n+m; i++)
{
if(match[i]!=-)
{
ans+=graph[match[i]][i];
}
}
printf("%d\n",-ans);
}
}

hdu 2448(KM算法+SPFA)的更多相关文章

  1. hdu 3488(KM算法||最小费用最大流)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  2. hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))

    Special Fish Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. HDU 2255 KM算法 二分图最大权值匹配

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  4. hdu 4862 KM算法 最小K路径覆盖的模型

    http://acm.hdu.edu.cn/showproblem.php?pid=4862 选t<=k次,t条路要经过全部的点一次而且只一次. 建图是问题: 我自己最初就把n*m 个点分别放入 ...

  5. HDU 1533 KM算法(权值最小的最佳匹配)

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  6. hdu 3435(KM算法最优匹配)

    A new Graph Game Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. hdu 1853 KM算法

    #include<stdio.h> #include<math.h> #include<string.h> #define N 200 #define inf 99 ...

  8. Mining Station on the Sea (hdu 2448 SPFA+KM)

    Mining Station on the Sea Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  9. hdu 2255 奔小康赚大钱--KM算法模板

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 题意:有N个人跟N个房子,每个人跟房子都有一定的距离,现在要让这N个人全部回到N个房子里面去,要 ...

随机推荐

  1. idea导入web项目tomcat

    概述 主要分为项目配置和tomcat配置两大步骤. 一.项目配置 打开idea,选择导入项 选择将要打开的项目路径后,继续选择项目的原本类型(后续引导设置会根据原本的项目类型更新成idea的项目),此 ...

  2. 2018 BAT最新《前端必考面试题》

    2018 BAT最新<前端必考面试题> 1.Doctype作用? 严格模式与混杂模式如何区分?它们有何意义? (1). 声明位于文档中的最前面,处于 标签之前.告知浏览器的解析器,用什么文 ...

  3. 在eclipse中安装html编辑器插件

    1.下载插件( 点击下载)                 解压后得到GEF-ALL-3.4.1.zip和tk.eclipse.plugin.htmleditor_2.2.0.jar   2.安装GE ...

  4. HDU 4348 主席树区间更新

    To the moon Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  5. Hbase万亿级存储性能优化总结

    背景 hbase主集群在生产环境已稳定运行有1年半时间,最大的单表region数已达7200多个,每天新增入库量就有百亿条,对hbase的认识经历了懵懂到熟的过程.为了应对业务数据的压力,hbase入 ...

  6. Java集合(3)一 红黑树、TreeMap与TreeSet(上)

    目录 Java集合(1)一 集合框架 Java集合(2)一 ArrayList 与 LinkList Java集合(3)一 红黑树.TreeMap与TreeSet(上) Java集合(4)一 红黑树. ...

  7. C11简洁之道:初始化改进

    1.  C++98/03初始化 我们先来总结一下C++98/03的各种不同的初始化情况: //普通数组 ] = {, , }; //POD(plain old data) struct A { int ...

  8. 「模板」网络最大流 FF && EK && Dinic && SAP && ISAP

    话不多说上代码. Ford-Fulkerson(FF) #include <algorithm> #include <climits> #include <cstdio& ...

  9. PHP 数据加密

    <?php /** * * 加密 * */ function lock_url($txt, $key = "aiteng") { $chars = "ABCDEFG ...

  10. 【51NOD-0】1058 N的阶乘的长度

    [算法]数学 [题解]n!的位数相当于ans=log10(n!)上取整,然后就可以拆出来加了. 可以用log10(i)或log(i)/log(10) 阶乘好像有个斯特林公式…… #include< ...